This paper deals with the connectedness of the cone-efficient solution set for vector optimization in locally convex Hausdorff topological vector spaces. The connectedness of the cone-efficient solution set is proved ...This paper deals with the connectedness of the cone-efficient solution set for vector optimization in locally convex Hausdorff topological vector spaces. The connectedness of the cone-efficient solution set is proved for multiobjective programming defined by a continuous one-to-one cone-quasiconvex mapping on a compact convex set of alternatives. During the proof, the generalized saddle theorem plays a key role.展开更多
This paper deals with the connectedness of the cone-efficient solution set for vector optimization inlocally convex Hausdorff topological vector spaces.The connectedness of the cone-efficient solution set is provedfor...This paper deals with the connectedness of the cone-efficient solution set for vector optimization inlocally convex Hausdorff topological vector spaces.The connectedness of the cone-efficient solution set is provedfor multiobjective programming defined by a continuous cone-quasiconvex mapping on a compact convex set ofalternatives.The generalized saddle theorem plays a key role in the proof.展开更多
A multicriterion clustering model with cone dominated structure is established and the concept of cone-efficient clustering is put forward. The properties of cone-efficient clustering are disscussed, and a method to s...A multicriterion clustering model with cone dominated structure is established and the concept of cone-efficient clustering is put forward. The properties of cone-efficient clustering are disscussed, and a method to solve multicriterion clustering is put forward.The model of Ref.[3] is a special case of that proposed in this paper.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(70071026)
文摘This paper deals with the connectedness of the cone-efficient solution set for vector optimization in locally convex Hausdorff topological vector spaces. The connectedness of the cone-efficient solution set is proved for multiobjective programming defined by a continuous one-to-one cone-quasiconvex mapping on a compact convex set of alternatives. During the proof, the generalized saddle theorem plays a key role.
基金Supported by the National Natural Science Foundation of China (No.70071026)
文摘This paper deals with the connectedness of the cone-efficient solution set for vector optimization inlocally convex Hausdorff topological vector spaces.The connectedness of the cone-efficient solution set is provedfor multiobjective programming defined by a continuous cone-quasiconvex mapping on a compact convex set ofalternatives.The generalized saddle theorem plays a key role in the proof.
文摘A multicriterion clustering model with cone dominated structure is established and the concept of cone-efficient clustering is put forward. The properties of cone-efficient clustering are disscussed, and a method to solve multicriterion clustering is put forward.The model of Ref.[3] is a special case of that proposed in this paper.