期刊文献+
共找到6,144篇文章
< 1 2 250 >
每页显示 20 50 100
UN Conducts AIDS Research In Guangdong
1
《China Population Today》 2001年第6期13-13,共1页
关键词 AIDS In UN conducts AIDS Research In Guangdong
暂未订购
LM-3C Conducts 200th Launch for CALT, Completing BeiDou 2 Satellite Navigation System
2
作者 REN Yueming 《Aerospace China》 2019年第2期58-58,共1页
China launched the 45th satellite in the BeiDou Navigation Satellite System (BDS) as well as the BeiDou 2 GEO-8 satellite into orbit on a LM-3C carrier rocket from the Xichang Satellite Launch Center at 23:48 Beijing ... China launched the 45th satellite in the BeiDou Navigation Satellite System (BDS) as well as the BeiDou 2 GEO-8 satellite into orbit on a LM-3C carrier rocket from the Xichang Satellite Launch Center at 23:48 Beijing time on May 17,2019. The LM-3C carrier rocket was developed by the China Academy of Launch Vehicle Technology (CALT),This was the 101st mission of the LM-3 series launch vehicle,the 200th mission of the LM launch vehicle family that was developed by CALT and the 304th mission of the LM family. 展开更多
关键词 China conducts LAUNCH
暂未订购
Effects of CNTs Addition on Microstructure and Properties of Pure Copper Prepared by LPBF
3
作者 Yang Laixia Zhang Longbo +4 位作者 Xie Qidong Zhang Yanze Yang Mengjia Mao Feng Chen Zhen 《稀有金属材料与工程》 北大核心 2026年第1期27-34,共8页
Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the eff... Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%. 展开更多
关键词 laser powder bed fusion(LPBF) Cu-CNTs composites mechanical property thermal conductivity
原文传递
Influence of Sulfonated Chitosan on Conductivity of Sulfonated Polyether Ether Ketone(SPEEK)at Room Temperature
4
作者 Aina Aqilah Mohd Rizal Oskar Hasdinor Hassan +4 位作者 Nor Kartini Jaafar Masnawi Mustaffa Mohd Tajudin Mohd Ali Ajis Lepit Nazli Ahmad Aini 《Energy Engineering》 2026年第1期475-492,共18页
Proton exchange membrane(PEM)is an integral component in fuel cells which enables proton transport for efficient energy conversion.Sulfonated Polyether Ether Ketone(SPEEK)has emerged as a cost-effective option with no... Proton exchange membrane(PEM)is an integral component in fuel cells which enables proton transport for efficient energy conversion.Sulfonated Polyether Ether Ketone(SPEEK)has emerged as a cost-effective option with non-fluorinated aromatic backbones for Proton Exchange Membrane Fuel Cell(PEMFC)applications,even though it exhibits lower proton conductivity compared to Nafion.This work aims to study the influence of Sulfonated Chitosan(SCS)concentrations on proton conductivity of SPEEK-based PEM at room temperature.SPEEK was synthesized using a sulfonation process with concentrated sulfuric acid at room temperature.SCS was synthesized via reflux of CS and 1.2 M H2SO4 with a ratio of 1:35(w/v)at 90℃ for 30 min.The composite membranes of SPEEK-SCS were formed with four different SCS concentrations,using the solution castingmethod,andDimethyl Sulfoxide(DMSO)was used as a solvent.The composite membranes synthesized include pure SPEEK(S0),SPEEK with 1%SCS(S1),SPEEK with 2%SCS(S2),and SPEEK with 3%SCS(S3).Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),water uptake,degree of swelling,Ionic exchange capacity(IEC)with Electrochemical impedance spectroscopy(EIS)were used to characterize the composite membranes in terms of composition,crystallinity,water absorption,dimensional changes,number of exchangeable ions in membranes,and proton conductivity,respectively.Notably,S3 had the highest water uptake and the lowest degree of swelling.S2 had the highest proton conductivity among the SPEEK-SCS composite membranes at room temperature with 3.44×10^(−2) Scm^(-1). 展开更多
关键词 SPEEK sulfonated chitosan PEM CONDUCTIVITY
在线阅读 下载PDF
The Microstructure and Properties of Graphene/Copper Composite Wires
5
作者 CHEN Wei CHEN Yufei +2 位作者 KUANG Meizhou CHEN Haibing LIN Gaoyong 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期1-7,共7页
In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires... In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation. 展开更多
关键词 copper-based composite wire GRAPHENE electrical conductivity cold drawing ANNEALING
原文传递
Shared mechanisms and pathological phenotypes underlying aminoacyl-tRNA synthetase-related neuropathies
6
作者 Elena R.Rhymes James N.Sleigh 《Neural Regeneration Research》 2026年第1期312-313,共2页
Charcot-Marie-Tooth disease(CMT) is a heterogeneous group of inherited peripheral neuro pathies;it is characterized by muscle weakness and wasting,as well as sensory dysfunction,that typically begins during adolescenc... Charcot-Marie-Tooth disease(CMT) is a heterogeneous group of inherited peripheral neuro pathies;it is characterized by muscle weakness and wasting,as well as sensory dysfunction,that typically begins during adolescence and ultimately leads to lifelong disability.Occurring in~1 in 2500individuals,CMT is the most common hereditary neuromuscular condition and results from mutations in> 100 different genes.CMT is grouped into type1(CMT1),where demyelination and loss of nerve conduction velocity occur,type 2(CMT2),where motor and sensory axons degenerate without loss of myelination/nerve conduction velocity,and intermediate CMT,where both demyelination and axon loss present alongside intermediate nerve condu ction velocities. 展开更多
关键词 conduction DEGENERATE typically
暂未订购
Effect of H_(3)BO_(3)Content on the Crystallization Process,Foaming Behavior and Physical Properties of Foamed Glass-Ceramics Prepared from Waste Glass Fibers
7
作者 ZHOU Yu YU Zhiqian +5 位作者 XU Zhaozhi GAO Wenkai LI Jinchang CHEN Lele YUE Yunlong KANG Junfeng 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期54-63,共10页
Waste glass fibers were used as the main raw materials to prepare foamed glass-ceramics with 0-14 wt%H_(3)BO_(3)as a flux agent.The effects of H_(3)BO_(3)on the crystallization process,foaming behavior,and physical pr... Waste glass fibers were used as the main raw materials to prepare foamed glass-ceramics with 0-14 wt%H_(3)BO_(3)as a flux agent.The effects of H_(3)BO_(3)on the crystallization process,foaming behavior,and physical properties of CaO-MgO-Al_(2)O_(3)-SiO_(2)foamed glass-ceramics were investigated.The results showed that the main crystalline phase of the foamed glass-ceramics was anorthite with diopside as a minor crystalline phase,which exhibited a typical surface crystallization process.The addition of H_(3)BO_(3)modified the surface of glass powders and inhibited crystal precipitation obviously.The low melting point of H_(3)BO_(3)and the decrease of crystallinity jointly promoted the growth of pores,resulting in a reduction of bulk density and an increase in porosity.The compressive strength and thermal conductivity of the samples were linearly related to the bulk density.In particular,the sample added with 10 wt%H_(3)BO_(3)exhibited excellent properties,possessing a low coefficient of thermal conductivity 0.081 W/(m·K)and relatively high compressive strength 3.36 MPa. 展开更多
关键词 foamed glass-ceramics CRYSTALLIZATION flux agent pore structure thermal conductivity
原文传递
Down-Top Strategy Engineered Large-Scale Fluorographene/PBO Nanofibers Composite Papers with Excellent Wave-Transparent Performance and Thermal Conductivity
8
作者 Yuhan Lin Lin Tang +4 位作者 Mingshun Jia Mukun He Junliang Zhang Yusheng Tang Junwei Gu 《Nano-Micro Letters》 2026年第1期935-951,共17页
With the miniaturization and high-frequency evolution of antennas in 5G/6G communications,aerospace,and transportation,polymer composite papers integrating superior wave-transparent performance and thermal conductivit... With the miniaturization and high-frequency evolution of antennas in 5G/6G communications,aerospace,and transportation,polymer composite papers integrating superior wave-transparent performance and thermal conductivity for radar antenna systems are urgently needed.Herein,a down-top strategy was employed to synthesize poly(p-phenylene benzobisoxazole)precursor nanofibers(prePNF).The prePNF was then uniformly mixed with fluorinated graphene(FG)to fabricate FG/PNF composite papers through consecutively suction filtration,hot-pressing,and thermal annealing.The hydroxyl and amino groups in prePNF enhanced the stability of FG/prePNF dispersion,while the increasedπ-πinteractions between PNF and FG after annealing improved their compatibility.The preparation time and cost of PNF paper was significantly reduced when applying this strategy,which enabled its large-scale production.Furthermore,the prepared FG/PNF composite papers exhibited excellent wave-transparent performance and thermal conductivity.When the mass fraction of FG was 40 wt%,the FG/PNF composite paper prepared via the down-top strategy achieved the wave-transparent coefficient(|T|2)of 96.3%under 10 GHz,in-plane thermal conductivity(λ_(∥))of 7.13 W m^(−1)K^(−1),and through-plane thermal conductivity(λ_(⊥))of 0.67 W m^(−1)K^(−1),outperforming FG/PNF composite paper prepared by the top-down strategy(|T|2=95.9%,λ_(∥)=5.52 W m^(−1)K^(−1),λ_(⊥)=0.52 W m^(−1)K^(−1))and pure PNF paper(|T|2=94.7%,λ_(∥)=3.04 W m^(−1)K^(−1),λ_(⊥)=0.24 W m^(−1)K^(−1)).Meanwhile,FG/PNF composite paper(with 40 wt%FG)through the down-top strategy also demonstrated outstanding mechanical properties with tensile strength and toughness reaching 197.4 MPa and 11.6 MJ m^(−3),respectively. 展开更多
关键词 PBO nanofibers Fluorinated graphene Wave-transparency Thermal conductivity
在线阅读 下载PDF
Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids
9
作者 Nikhil S.Mane Sheetal Kumar Dewangan +3 位作者 Sayantan Mukherjee Pradnyavati Mane Deepak Kumar Singh Ravindra Singh Saluja 《Computers, Materials & Continua》 2026年第1期316-331,共16页
The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a n... The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids. 展开更多
关键词 Artificial neural networks nanofluids thermal conductivity PREDICTION
在线阅读 下载PDF
Influence of ultrasonic agitation on dispersion of fibers in a shell mold for investment casting
10
作者 Zhi-cheng Feng Kai Lü +2 位作者 Yan Lu Wen-bo Jin Lei Che 《China Foundry》 2026年第1期108-116,共9页
To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring ... To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion. 展开更多
关键词 investment casting steel fibers fiber-reinforced shell ultrasonic agitation thermal conductivity
在线阅读 下载PDF
Evolution of microstructure and properties of Cu-12Fe alloys prepared by twin-roll strip casting
11
作者 Tian-mo Wu Yuan-xiang Zhang +3 位作者 Shuai-jie Guo Nuo-jin Wang Jian Kang Guo Yuan 《China Foundry》 2026年第1期73-82,共10页
The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu... The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe. 展开更多
关键词 Cu-Fe alloy twin-roll strip casting MICROSTRUCTURE mechanical properties thermal aging electrical conductivity
在线阅读 下载PDF
On AlN_(P)/Mg-Zn-Cu cast composites with low expansion and high thermal conductivity
12
作者 Shu-sen Wu Lu Chen +2 位作者 Shu-lin Lü Wei Guo Jian-yu Li 《China Foundry》 2026年第1期101-107,共7页
There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with h... There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with high thermal conductivity.Furthermore,it explores the preparation of AlN_(P)/Mg-Zn-Cu composites featuring low coefficients of thermal expansion.The stir casting method was utilized to fabricate the composites and an investigation was conducted to examine their microstructure and thermal properties.Results indicate that the addition of AlN_(P)reduces the thermal expansion coefficient while maintaining relatively high thermal conductivity.Specifically,the AlN_(P)/Mg-0.5Zn-0.5Cu composite with 30wt.%AlN_(P)achieves a thermal conductivity of 132.7 W·m^(-1)·K^(-1)and a thermal expansion coefficient of 18.5×10^(-6)K^(-1),rendering it suitable for electronic packaging applications where thermal management is critical. 展开更多
关键词 thermal expansion thermal conductivity magnesium-matrix composites Mg-Zn-Cu alloy
在线阅读 下载PDF
Dynamic Network‑and Microcellular Architecture‑Driven Biomass Elastomer toward Sustainable and Versatile Soft Electronics
13
作者 Shanqiu Liu Yi Shen +5 位作者 Yizhen Li Yunjie Mo Enze Yu Taotao Ge Ping Li Jingguo Li 《Nano-Micro Letters》 2026年第3期368-387,共20页
Conductive elastomers combining micromechanical sensitivity,lightweight adaptability,and environmental sustainability are critically needed for advanced flexible electronics requiring precise responsiveness and long-t... Conductive elastomers combining micromechanical sensitivity,lightweight adaptability,and environmental sustainability are critically needed for advanced flexible electronics requiring precise responsiveness and long-term wearability;however,the integration of these properties remains a significant challenge.Here,we present a biomass-derived conductive elastomer featuring a rationally engineered dynamic crosslinked network integrated with a tunable microporous architecture.This structural design imparts pronounced micromechanical sensitivity,an ultralow density(~0.25 g cm^(−3)),and superior mechanical compliance for adaptive deformation.Moreover,the unique micro-spring effect derived from the porous architecture ensures exceptional stretchability(>500%elongation at break)and superior resilience,delivering immediate and stable electrical response under both subtle(<1%)and large(>200%)mechanical stimuli.Intrinsic dynamic interactions endow the elastomer with efficient room temperature self-healing and complete recyclability without compromising performance.First-principles simulations clarify the mechanisms behind micropore formation and the resulting functionality.Beyond its facile and mild fabrication process,this work establishes a scalable route toward high-performance,sustainable conductive elastomers tailored for next-generation soft electronics. 展开更多
关键词 Bio-based conductive elastomers Dynamic covalent chemistry Micromechanical sensitivity Soft electronics
在线阅读 下载PDF
Advanced thermal-resistant aluminum conductor alloys:A comprehensive review
14
作者 Behrouz Abnar Samaneh Gashtiazar +1 位作者 Paul Rometsch Mousa Javidani 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期68-93,共26页
This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductiv... This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr. 展开更多
关键词 electrical conductivity mechanical properties rare earth elements thermal stability scandium-and zirconium-containing aluminium alloy
在线阅读 下载PDF
Electronically Conductive Metal−Organic Framework With Photoelectric and Photothermal Effect as a Stable Cathode for High-Temperature Photo-Assisted Zn/Sn-Air Battery
15
作者 Jiangchang Chen Chuntao Yang +2 位作者 Yao Dong Ya Han Yingjian 《Carbon Energy》 2026年第1期105-114,共10页
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro... Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis. 展开更多
关键词 electronically conductive MOFs high temperatures photo-assisted Zn/Sn-air batteries photoelectric effects photothermal effects
在线阅读 下载PDF
Cell Phf8[ˈfeɪt]control:Epigenetic regulation during oligodendroglial development
16
作者 Marco Kremp Michael Wegner 《Neural Regeneration Research》 2026年第3期1110-1111,共2页
Oligodendrocytes and their cell-intrinsic gene regulatory network:Oligodendrocytes(OLs)are the myelinating glial cells of the vertebrate central nervous system.They are responsible for insulating neuronal axons with a... Oligodendrocytes and their cell-intrinsic gene regulatory network:Oligodendrocytes(OLs)are the myelinating glial cells of the vertebrate central nervous system.They are responsible for insulating neuronal axons with a lipid-rich myelin sheath,which enables the saltatory conduction of action potentials.During development,oligodendrocyte progenitor cells(OPCs)emerge from neural stem cells in the ventricular zone.They then proliferate,increase their number,and migrate to their final destination where they encounter unmyelinated neuronal axons and differentiate in a stepwise fashion into myelinating oligodendrocytes(mOLs)under the influence of environmental stimuli. 展开更多
关键词 insulating neuronal axons myelinating glial cells neural stem cells oligodendroglial development progenitor cells opcs emerge CELL epigenetic regulation saltatory conduction action potentialsduring
暂未订购
Nanjing Foreign Affairs Office Conducts Sino-Japanese History Teachers’ Exchanges for Third Consecutive Year
17
《Voice of Friendship》 2017年第1期17-18,共2页
Since 2014,the Nanjing Foreign Affairs Office has cooperated with the Japan Association of History Educators to organize three annual exchanges of Chinese and Japanese history teachers as one part of a series of activ... Since 2014,the Nanjing Foreign Affairs Office has cooperated with the Japan Association of History Educators to organize three annual exchanges of Chinese and Japanese history teachers as one part of a series of activities under the theme'Joining hands with foreign friends to build peace cities'.The Japanese association is a nongovernmental organization with 展开更多
关键词 OFFICE Exchanges for Third Consecutive Year Nanjing Foreign Affairs Office conducts Sino-Japanese History Teachers
原文传递
XinAo Group Conducts Wet Commissioning on 600 Thousand T/A Methanol Project in Erdos
18
《China Chemical Reporter》 2008年第13期10-10,共4页
On April 11th,XinAo Group(ENN Group),a leading clean energy company in China,announced that it will soon conduct wet commissioning on its 600 thousand
关键词 thousand CONDUCT CLEAN Hebei HOLDING globally
全文增补中
Fujian Meizhouwan Chlor-Alkali Conducts Wet Commissioning on BDO Project
19
《China Chemical Reporter》 2009年第32期17-17,共6页
On November 5th, 2009 Fujian Meizhouwan ChlorAlkaliIndustry Co., Ltd. started to conduct wet commissioningon its 30 000 t/a 1,4-butanediol (BDO)project.
关键词 Fujian ALKALI CONDUCT
全文增补中
Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N‑RGO for Boosting Electromagnetic Wave Absorption 被引量:1
20
作者 Kaili Zhang Yuefeng Yan +4 位作者 Zhen Wang Guansheng Ma Dechang Jia Xiaoxiao Huang Yu Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期517-532,共16页
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ... Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism. 展开更多
关键词 Electromagnetic wave absorption Fe-N-RGO Dipole polarization Conduction loss Impedance matching
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部