Piezoelectric transduction technology enables the direct conversion between mechanical and electrical energy,finding extensive applications in sensing,acoustics,imaging,actuation,and energy harvesting[1].Previous stud...Piezoelectric transduction technology enables the direct conversion between mechanical and electrical energy,finding extensive applications in sensing,acoustics,imaging,actuation,and energy harvesting[1].Previous studies on piezoelectric materials have primarily focused on ceramics or single-crystal materials characterized by wide band gaps(E_(g)>2.0 e V[2])and low electrical conductivity.In contrast,narrow-bandgap(E_(g)<0.5 eV[3])semiconductor materials typically exhibit high electrical conductivity,which is unfavorable for the effective accumulation of charges required to establish a stable voltage response.Consequently,experimental investigations into the piezoelectric effect of narrow-bandgap semiconductors are scarce.展开更多
文摘Piezoelectric transduction technology enables the direct conversion between mechanical and electrical energy,finding extensive applications in sensing,acoustics,imaging,actuation,and energy harvesting[1].Previous studies on piezoelectric materials have primarily focused on ceramics or single-crystal materials characterized by wide band gaps(E_(g)>2.0 e V[2])and low electrical conductivity.In contrast,narrow-bandgap(E_(g)<0.5 eV[3])semiconductor materials typically exhibit high electrical conductivity,which is unfavorable for the effective accumulation of charges required to establish a stable voltage response.Consequently,experimental investigations into the piezoelectric effect of narrow-bandgap semiconductors are scarce.