Phonon quasiparticles and their anharmonic interactions govern heat transport in insulators.Accurate characterization of phonon frequencies and linewidths,especially beyond the quasiparticle approximation,is essential...Phonon quasiparticles and their anharmonic interactions govern heat transport in insulators.Accurate characterization of phonon frequencies and linewidths,especially beyond the quasiparticle approximation,is essential for understanding anharmonic effects and lattice thermal conductivity.Here,we investigate the anharmonic lattice dynamics and phonon transport in crystalline copper halides CuBiI4 using the self-consistent phonon theory,combined with the Wigner transport formalism and the quasi-harmonic Green–Kubo method.Results show that the three-phonon bubble self-energy substantially renormalizes the phonon dispersion,inducing strong modedependent broadening.Depending on the strength of the anharmonic scattering,phonons exhibit particle-like,wave-like,or overdamped transport characteristics,with broadened states contributing additional coherent thermal transport channels.We establish a consistent description of the overdamped phonon self-energy and advance the microscopic understanding of the strongly anharmonic phonon thermal transport in CuBiI4.Overdamped phonon modes significantly hinder the lattice thermal transport by reducing phonon lifetimes.However,the still well-defined phonon dispersions mitigate carrier scattering induced by the local structural disorder.Anisotropic electrical transport properties are obtained by considering polar and non-polar electroacoustic coupling and ionized impurity scattering mechanisms.Upon electron doping,the thermoelectric figure of merit of n-type CuBiI4 reaches 2.25 at 800 K.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12574028,U2330104,and 12074381)Guang-dong Basic and Applied Basic Research Foundation(Grant No.2024A1515010484)。
文摘Phonon quasiparticles and their anharmonic interactions govern heat transport in insulators.Accurate characterization of phonon frequencies and linewidths,especially beyond the quasiparticle approximation,is essential for understanding anharmonic effects and lattice thermal conductivity.Here,we investigate the anharmonic lattice dynamics and phonon transport in crystalline copper halides CuBiI4 using the self-consistent phonon theory,combined with the Wigner transport formalism and the quasi-harmonic Green–Kubo method.Results show that the three-phonon bubble self-energy substantially renormalizes the phonon dispersion,inducing strong modedependent broadening.Depending on the strength of the anharmonic scattering,phonons exhibit particle-like,wave-like,or overdamped transport characteristics,with broadened states contributing additional coherent thermal transport channels.We establish a consistent description of the overdamped phonon self-energy and advance the microscopic understanding of the strongly anharmonic phonon thermal transport in CuBiI4.Overdamped phonon modes significantly hinder the lattice thermal transport by reducing phonon lifetimes.However,the still well-defined phonon dispersions mitigate carrier scattering induced by the local structural disorder.Anisotropic electrical transport properties are obtained by considering polar and non-polar electroacoustic coupling and ionized impurity scattering mechanisms.Upon electron doping,the thermoelectric figure of merit of n-type CuBiI4 reaches 2.25 at 800 K.