期刊文献+
共找到6,025篇文章
< 1 2 250 >
每页显示 20 50 100
A conductivity model for hydrogen based on ab initio simulations
1
作者 Uwe Kleinschmidt Ronald Redmer 《Matter and Radiation at Extremes》 2025年第4期58-69,共12页
We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresp... We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresponding extended ab initio data set,we construct interpolation formulas covering the range from low-density,high-temperature to high-density,low-temperature plasmas.Our conductivity model repro-duces the well-known limits of the Spitzer and Ziman theory.We compare with available experimental data andfind very good agreement.The new conductivity model can be applied,for example,in dynamo simulations for magneticfield generation in gas giant planets,brown dwarfs,and stellar envelopes. 展开更多
关键词 molecular dynamics simulations electrical thermal conductivity conductivity density functional theoryon interpolation formulas conductivity model extended ab initio data setwe spitzer ziman theorywe
在线阅读 下载PDF
Using Targeted Phonon Excitation to Modulate Thermal Conductivity of Boron Nitride
2
作者 Dongkai Pan Tianhao Li +3 位作者 Xiao Wan Zhicheng Zong Yangjun Qin Nuo Yang 《Chinese Physics Letters》 2025年第7期449-453,共5页
Recent advancements in thermal conductivity modulating strategies have shown promising enhancements to the thermal management capabilities of two-dimensional materials.In this article,both the iterative Boltzmann tran... Recent advancements in thermal conductivity modulating strategies have shown promising enhancements to the thermal management capabilities of two-dimensional materials.In this article,both the iterative Boltzmann transport equation solution and the two-temperature model were employed to investigate the efficacy of targeted phonon excitation applied to hexagonal boron nitride(hBN).The results indicate significant modifications to hBN's thermal conductivity,achieving increases of up to 30.1%as well as decreases of up to 59.8%.These findings validate the reliability of the strategy,expand its scope of applicability,and establish it as a powerful tool for tailoring thermal properties across a wider range of fields. 展开更多
关键词 thermal conductivityachieving thermal management capabilities boron nitride targeted phonon excitation iterative boltzmann transport equation solution hexagonal boron nitride hbn thermal conductivity modulating strategies thermal conductivity
原文传递
Suppressing the oxygen-ionic conductivity and promoting the phase stability of the high-entropy rare earth niobates via Ta substitution 被引量:2
3
作者 Mengdi Gan Liping Lai +5 位作者 Jiankun Wang Jun Wang Lin Chen Jingjin He Jing Feng Xiaoyu Chong 《Journal of Materials Science & Technology》 2025年第6期79-94,共16页
Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-te... Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs. 展开更多
关键词 Thermal barrier coating(TBCs) High-entropy rare earth oxides(HEOs) High-temperature phase stability Oxygen-ionic conductivity Thermal conductivity
原文传递
Four-Phonon Scattering and Wave-Like Phonon Tunneling Drive Glassy Ultralow Lattice Thermal Conductivity in Cs_(2)AgInCl_(6)
4
作者 Rongrong Ma Xiaoxiao Zhang +3 位作者 Shiqi Guo Mei Ge Junfeng Zhang Jiangjiang Ma 《Chinese Physics Letters》 2025年第9期214-223,共10页
Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investi... Lead-free halide double perovskites(HDPs)provide a promising platform for high-performance thermoelectric due to their intrinsically ultralow lattice thermal conductivity k_(l).In this study,we comprehensively investigate the lattice dynamics of Cs_(2)AgInCl_(6)using first-principles calculations.By explicitly incorporating four-phonon scattering and wave-like phonon tunneling,we predict a k_(l)of 0.52 W·m^(-1)·K^(-1)with a remarkably weak temperature dependence(k_(l)∝T^(-0.31)),confirming the intrinsically glass-like ultralow k_(l)in Cs_(2)AgInCl_(6).Further analyses reveal that hierarchical chemical bonds,loosely bonded rattling atoms and a mixed crystalline-liquid state collectively induce strong anharmonicity manifested in flat phonon modes.These factors dominate the glass-like thermal transport component of k_(l).This work uncovers the underlying mechanisms governing the unusual thermal transport properties in lead-free HDPs and offers guiding principles for designing novel energy conversion technologies. 展开更多
关键词 lead free halide double perovskites four phonon scattering Cs AgInCl double perovskites hdps provide lattice dynamics wave phonon tunneling glassy ultralow lattice thermal conductivity ultralow lattice thermal conductivity
原文传递
Hydraulic conductivity over a wide suction range of loess with different dry densities
5
作者 Xiaokun Hou Shengwen Qi +3 位作者 Yan Li Fangcui Liu Tonglu Li Hua Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期481-492,共12页
Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil wate... Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil. 展开更多
关键词 Hydraulic conductivity curve Wide suction range Dry density Pore size distribution Saturated hydraulic conductivity
在线阅读 下载PDF
Face-sharing strategy helps achieve lithium superionic conductivity in face-centred cubic oxides
6
作者 Yepei Li Kun Lin 《Chinese Journal of Structural Chemistry》 2025年第4期9-11,共3页
All-solid-state lithium ion batteries(ASSLIBs)have attracted much attention due to their high safety and increased energy density,which have become a substitute to conventional liquid electrolyte batteries[1].The deve... All-solid-state lithium ion batteries(ASSLIBs)have attracted much attention due to their high safety and increased energy density,which have become a substitute to conventional liquid electrolyte batteries[1].The development of high-performance solid electrolyte is the key to the development of solid-state battery technology.Solid-state electrolyte(SSE)materials should have high ionic conductivity,poor electronic conductivity,wide electrochemical window,and low electrode and electrolyte interface resistance. 展开更多
关键词 lithium superionic conductivity lithium ion batteries asslibs face centred cubic oxides electronic conductivitywide liquid electrolyte batteries electrode electrolyte interface resistance all solid state lithium ion batteries high safety
原文传递
Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review 被引量:1
7
作者 RONG Xian YANG Yuqi ZHANG Jianxin 《材料导报》 北大核心 2025年第13期278-290,共13页
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to... In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life. 展开更多
关键词 vacuum insulation panel thermal conductivity thermal insulation energy conservation
在线阅读 下载PDF
New insights into Earth's mantle conductivity and water distribution using Macao Science Satellite-1 data 被引量:2
8
作者 ZhengYong Ren YiFei Xie +3 位作者 ChaoJian Chen HongBo Yao JingTian Tang Keke Zhang 《Earth and Planetary Physics》 2025年第3期595-606,共12页
Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rat... Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rates. As electrical conductivity in the Earth's interior is highly sensitive to water content, it is an important geophysical parameter for understanding the deep Earth water content. Since its launch on May 21, 2023, the MSS-1(Macao Science Satellite-1) mission has operated for nearly one year, with its magnetometer achieving a precision of higher than 0.5 nT after orbital testing and calibration. Orbiting at 450 kilometers with a unique 41-degree inclination, the satellite enables high-density observations across multiple local times, allowing detailed monitoring of low-latitude regions and enhancing data for global conductivity imaging. To better understand the global distribution of water within the Earth's interior, it is crucial to study internal conductivity structure and water content distribution. To this aim, we introduce a method for using MSS-1 data to estamate induced magnetic fields related to magnetospheric currents. We then develop a trans-dimensional Bayesian approach to reveal Earth's internal conductivity, providing probable conductivity structure with an uncertainty analysis. Finally, by integrating known mineral composition, pressure, and temperature distribution within the mantle, we estimate the water content range in the mantle transition zone, concluding that this region may contain the equivalent of up to 3.0 oceans of water, providing compelling evidence that supports the hypothesis of a deep water cycle within the Earth's interior. 展开更多
关键词 Macao Science Satellite-1 mantle conductivity water content
在线阅读 下载PDF
Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte 被引量:1
9
作者 Jingyu Shi Xiaofeng Wu +7 位作者 Yutong Chen Yi Zhang Xiangyan Hou Ruike Lv Junwei Liu Mengpei Jiang Keke Huang Shouhua Feng 《Chinese Chemical Letters》 2025年第5期198-210,共13页
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag... Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies. 展开更多
关键词 Garnet-structured solid-state electrolyte Structure factors Ionic conductivity Chemical stability Li-ion battery
原文传递
Effects of La and Ce on the microstructure,thermal conductivity and strength synergy of the as-extruded Mg-Mn-RE alloys 被引量:1
10
作者 Huafeng Liu Taiki Nakata +6 位作者 Chao Xu Guangze Tang Danyang Li Xiaojun Wang Guisong Wang Shigeharu Kamado Lin Geng 《Journal of Magnesium and Alloys》 2025年第2期654-667,共14页
High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabrica... High thermal conductivity and high strength Mg-1.5Mn-2.5Ce alloy with a tensile yield strength of 387.0 MPa,ultimate tensile strength of 395.8 MPa,and thermal conductivity of 142.1 W/(m·K)was successfully fabricated via hot extrusion.The effects of La and Ce additions on the microstructure,thermal conductivity,and mechanical properties of the Mg-1.5Mn alloy were investigated.The results indicated that both the as-extruded Mg-1.5Mn-2.5La and Mg-1.5Mn-2.5Ce alloys exhibited a bimodal grain structure,with dynamically precipitated nano-scaleα-Mn phases.In comparison with La,the addition of Ce enhanced the dynamic precipitation more effectively during hot extrusion,while its influence on promoting the dynamic recrystallization was relatively weaker.The high tensile strength obtained in the as-extruded Mg-1.5Mn-2.5RE alloys can be attributed to the combined influence of the bimodal grain structure(with fine dynamic recrystallized(DRXed)grain size and high proportion of un-dynamic recrystallized(unDRXed)grains),dense nano-scale precipitates,and broken Mg12RE phases,while the remarkable thermal conductivity was due to the precipitation of Mn-rich phases from the Mg matrix. 展开更多
关键词 Mg-Mn-RE alloys Thermal conductivity Mechanical properties Dynamic precipitation
在线阅读 下载PDF
Flake Graphite on Mechanical,Anti-corrosion,and Thermal Conductivity Properties of Magnesium Potassium Phosphate Coating
11
作者 FAN Bingcheng ZHENG Yaxin LIU Yi 《材料科学与工程学报》 北大核心 2025年第5期732-742,795,共12页
Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake gra... Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management. 展开更多
关键词 Flake graphite ANTI-CORROSION Thermal conductivity Inorganic coatings
在线阅读 下载PDF
Effect of Modification and Aging Treatments on Microstructure,Mechanical Properties and Electrical Conductivity of Al8Si0.4Mg0.4Fe Alloy
12
作者 Xing Quanyi Zhou Ge +3 位作者 Zhang Haoyu Che Xin Wang Wenjingzi Chen Lijia 《稀有金属材料与工程》 北大核心 2025年第9期2247-2255,共9页
Self-designed Al8Si0.4Mg0.4Fe aluminium alloy was modified with Sr,followed by solid solution and aging treatments to regulate its microstructure and mechanical/electrical properties.The results show that after the mo... Self-designed Al8Si0.4Mg0.4Fe aluminium alloy was modified with Sr,followed by solid solution and aging treatments to regulate its microstructure and mechanical/electrical properties.The results show that after the modification treatment,the room-temperature tensile strength of the alloy remains nearly unchanged,the elongation at break slightly increases from 1.82%to 3.34%,and the electrical conductivity significantly increases from 40.1%international annealed copper standard(IACS)to 42.0%IACS.After the modification,the alloy was subjected to solid solution treatment at 515℃for 8 h,followed by aging treatment at 180,200,220 and 240℃for 6 h.With increasing aging temperature,the electrical conductivity increases monotonously from 41.4%IACS to 45.5%IACS,while the room-temperature tensile strength initially increases and then decreases.At 200℃,the alloy achieves an optimal balance between electrical conductivity and room-temperature tensile strength:the electrical conductivity is 42.5%IACS,and the room-temperature tensile strength is 282.9 MPa.When the aging temperature continues to rise,the alloy undergoes overaging.Although the conductivity continues to increase,the room-temperature tensile strength drops sharply,and it is only 177.1 MPa at 240℃. 展开更多
关键词 Al8Si0.4Mg0.4Fe alloy electrical conductivity aging treatment room-temperature mechanical properties microstructural evolution
原文传递
Novel thermal interface materials based on mesocarbon microbeads with a high through-plane thermal conductivity
13
作者 SUN Zhi-peng MA Cheng +2 位作者 WANG Ji-tong QIAO Wen-ming LING Li-cheng 《新型炭材料(中英文)》 北大核心 2025年第2期440-455,共16页
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme... The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization. 展开更多
关键词 Thermal interface material Mesocarbon microbeads Through-plane thermal conductivity
在线阅读 下载PDF
Introducing High-Volume-Fraction Ultrafine Grains to Obtain Superior Balance of Strength and Electrical Conductivity for Cu/Al_(2)O_(3)Composite
14
作者 Zhang Jun Liu Xi +7 位作者 Li Yi Chang Guo Peng Haoran Zhang Shuang Huang Qi Zhao Xueni Li Liang Huo Wangtu 《稀有金属材料与工程》 北大核心 2025年第4期908-919,共12页
Compared with Cu/Al_(2)O_(3)composites,high-strength Cu/Al_(2)O_(3)composites usually exhibit obviously deteriorated electrical conductivity.A chemical and mechanical alloying-based strategy was adopted to fabricate u... Compared with Cu/Al_(2)O_(3)composites,high-strength Cu/Al_(2)O_(3)composites usually exhibit obviously deteriorated electrical conductivity.A chemical and mechanical alloying-based strategy was adopted to fabricate ultrafine composite powders with lowcontent reinforcement and constructed a combined structure of Cu ultrafine powders covered with in-situ Al_(2)O_(3)nanoparticles.After consolidation at a relatively lower sintering temperature of 550℃,high-volume-fraction ultrafine grains were introduced into the Cu/Al_(2)O_(3)composite,and many in-situ Al_(2)O_(3)nanoparticles with an average size of 11.7±7.5 nm were dispersed homogeneously in the Cu grain.Results show that the composite demonstrates an excellent balance of high tensile strength(654±1 MPa)and high electrical conductivity(84.5±0.1%IACS),which is ascribed to the synergistic strengthening effect of ultrafine grains,dislocations,and in-situ Al_(2)O_(3)nanoparticles.This approach,which utilizes ultrafine composite powder with low-content reinforcement as a precursor and employs low-temperature and high-pressure sintering subsequently,may hold promising potential for large-scale industrial production of high-performance oxide dispersion strengthened alloys. 展开更多
关键词 Cu/Al_(2)O_(3)composite ultrafine grain in-situ Al_(2)O_(3)nanoparticle strengthening mechanism electrical conductivity
原文传递
Tailoring cryogenic thermal conductivity in EuTiO_(3)-based magnetic refrigeration materials
15
作者 Huicai Xie Jiaxin Jiang +5 位作者 Hao Sun Zhenxing Li Jun Liu Junfeng Wang Zhaojun Mo Jun Shen 《Journal of Rare Earths》 2025年第5期997-1002,共6页
As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal con... As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal conductivity of many competitive oxide-based magnetic refrigerants,exemplified by EuTiO3-based compounds,acts as a major limitation to their practical application.Therefore,improving the thermal conductivity of magnetic refrigeration materials has become a research emphasis of magnetic refrigeration in recent years.In this work,a series of EuTiO_(3)(ETO)/Cu composites with different copper additives was prepared using a solid-phase reaction method by introducing appropriate amounts of copper powder.The influence of the introduction of copper on the phase composition,microstructure,thermal conductivity,and magnetocaloric effect of the composites was systematically investigated.Unexpectedly,the thermal conductivity of the composites is enhanced by up to 260%due to copper addition,accompanied by only a 5%decrease in magnetic entropy change and refrigerating capacity.Copper additive forms localized thermal conductive networks and promotes the densification process,resulting in significantly enhanced thermal conductivity of the composites.This work demonstrates the feasibility of improving the thermal conductivity of oxide-base d magnetic refrigeration materials by introducing highly thermally conductive substances. 展开更多
关键词 Thermal conductivity EuTiO_(3) Magnetic refrigeration Rare earths Thermal conductive network
原文传递
Dual-phase synergistically enhancing mechanical properties and thermal conductivity of hot-extruded Mg-8Gd-1Er-8Zn-1Mn alloy
16
作者 Xudong Li Wenbo Du +3 位作者 Feng Lou Ning Ding Xian Du Shubo Li 《Journal of Magnesium and Alloys》 2025年第3期1176-1186,共11页
The contradiction between mechanical properties and thermal conductivity of magnesium alloys is a roadblock for their widespread applications.In this study,we developed a hot-extruded Mg-8Gd-1Er-8Zn-1Mn alloy with hig... The contradiction between mechanical properties and thermal conductivity of magnesium alloys is a roadblock for their widespread applications.In this study,we developed a hot-extruded Mg-8Gd-1Er-8Zn-1Mn alloy with high-strength and high-thermal-conductivity via dual-phase,W-phase andα-Mn,synergistically strengthening.The alloy extruded at 300℃ exhibited the yield strength and elongation of 372 MPa and 12%,respectively,it simultaneously demonstrated a high thermal conductivity of 134.3W/(m·K).After extrusion,the original coarse W-phase in the alloy was broken into near-spheroidal particles,which reduced the probability of electron scattering.In addition,a large number of solute atoms dynamically precipitated in the form of nanoscale rod-like W-phase andα-Mn,makingα-Mg matrix revert to a nearly periodic arrangement state.The high yield strength of the alloy is predominantly determined by grain boundary strengthening as well as W-phase andα-Mn dual-phase strengthening.Notably,the strategy of dual-phase strengthening provides a valuable approach for developing structure-function integrated Mg alloys. 展开更多
关键词 Mg-RE-Zn alloy W-phase α-Mn Thermal conductivity Strength
在线阅读 下载PDF
Loess compaction at different water contents:Effects on hydraulic conductivity,compression behavior,microstructure,and water distribution
17
作者 Kangze Yuan Wankui Ni +3 位作者 Xiangfei Lü Haiman Wang Yongpeng Nie Gabriele Della Vecchia 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5307-5317,共11页
In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,en... In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content. 展开更多
关键词 Compacted loess Water content COMPRESSIBILITY Hydraulic conductivity MICROSTRUCTURE
在线阅读 下载PDF
High-work-function transparent electrode with an enhanced air-stable conductivity based on AgNiCu core-shell nanowires for Schottky photodiode
18
作者 Tingting Yan Wei Yang +1 位作者 Limin Wu Xiaosheng Fang 《Journal of Materials Science & Technology》 2025年第6期95-102,共8页
Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its wor... Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its work function.However,AgNi NWs-based electrodes suffer from poor electrical conductivity under air exposure due to the low-conductivity NiO generated on its surface.Here,Cu was further doped in AgNi NWs to form AgNiCu NWs and regulate its surface oxide under long-term air exposure.Finally,it is demonstrated that the conductivity of AgNiCu NWs can acquire an improved tolerable tempera-ture(over 240℃)and prolonged high-temperature tolerance time(over 150 min)by finely regulating the doping content Cu,indicating an enhanced air-stable conductivity.The optimized AgNiCu NWs also achieve superior transparent conductivity as pure Ag NWs and high work function as AgNi NWs,which has been successfully applied in constructing an n-type photodiode with an effective rectification effect. 展开更多
关键词 Mental nanowires Cu-doping Air-stable conductivity Transparent electrode PHOTODIODE
原文传递
Highly Transparent PVA Hydrogel with Enhanced Mechanical Properties and Electrical Conductivity by Doping with Cyclohexane-1,2,3,4,5,6-Hexacarboxylic Acid
19
作者 GAO Hu YANG Fangqiang +5 位作者 JIN Fei GE Hongliang ZHU Xianjun WU Qiong WANG Ying YANG Hua 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期338-343,共6页
Polyvinyl alcohol(PVA)hydrogels doped with cyclohexane-1,2,3,4,5,6-hexacarboxylic acid(CHA)were successfully prepared during drying and swelling.Structural and morphological characterizations suggest the carboxyl and ... Polyvinyl alcohol(PVA)hydrogels doped with cyclohexane-1,2,3,4,5,6-hexacarboxylic acid(CHA)were successfully prepared during drying and swelling.Structural and morphological characterizations suggest the carboxyl and hydroxyl groups in the material undergo esterification during the preparation of the material,which contributes to the high transparency with 90%transmittance in the 400 to 800 nm range and robust mechanical properties of the material with a tensile strength at a break of 27.55 MPa.It is noteworthy that the bending and torsion angles exhibit a strong linear correlation with electrical resistance,enabling the monitoring of the bending motion state of each human body segment. 展开更多
关键词 HYDROGEL conductivity strain sensor
原文传递
Modification of Maxwell model for conductivity prediction of carbon nanotubes-filled polymer composites with tunneling effect
20
作者 Jue ZHU Longyuan LI Ningtao ZHU 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期25-36,共12页
Carbon nanotubes(CNTs)have garnered great attention in recent years due to their outstanding electrical,thermal,and mechanical properties.The incorporation of small amounts of CNTs in polymers can substantially improv... Carbon nanotubes(CNTs)have garnered great attention in recent years due to their outstanding electrical,thermal,and mechanical properties.The incorporation of small amounts of CNTs in polymers can substantially improve the sensitivity of the polymer's electrical conductivity.This paper presents a modified Maxwell model to evaluate the electrical conductivity of CNTs-filled polymer composites by introducing a transition zone to account for the tunneling effect.In this modified Maxwell model,the CNTs-filled polymer composite is modeled as a three-phase composite,consisting of a matrix(polymer),inclusions(CNTs),and a transition zone(tunneling zone).The effective electrical conductivity(EEC)of the composite is calculated based on the volume fractions and electrical conductivities of the matrix,inclusions,and transition zone.The model's validity is confirmed through the use of available test data,which demonstrates its capability to accurately capture the nonlinear conductivity behavior observed in CNTs-polymer composites.This study offers valuable insights into the design of high-performance conductive polymer nanocomposites,and enhances the understanding of electrical conduction mechanisms in CNT-dispersed polymer composites. 展开更多
关键词 carbon nanotube(CNT) polymer composite electrical conductivity TUNNELING Maxwell model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部