Surface potential decay of polymers for electrical insulation can help to determine the dark conductivity for spacecraft charging analysis. Due to the existence of radiation-induced conductivity, it decays fast in the...Surface potential decay of polymers for electrical insulation can help to determine the dark conductivity for spacecraft charging analysis. Due to the existence of radiation-induced conductivity, it decays fast in the first few hours after irradiation and exponentially slowly for the remaining time. The measurement of dark conductivity with this method usually takes the slow part and needs a couple of days. Integrating the Fowler formula into the deep dielectric charging equations, we obtain a new expression for the fast decay part. The experimental data of different materials, dose rates and temperatures are fitted by the new expression. Both the dark conductivity and the radiation-induced conductivity are derived and compared with other methods. The result shows a good estimation of dark conductivity and radiation-induced conductivity in high-resistivity polymers, which enables a fast measurement of dielectric conductivity within about 600 rain after irradiation.展开更多
We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlat- rices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appe...We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlat- rices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged w^ve number. The magnetic and eleetr/c potentials modify the energy band structure and transmission spectrum in entirely diverse ways. In addition, the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states. The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.展开更多
Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×...Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities in Nanjing University of Aeronautics and Astronautics under Grant No NS2014089
文摘Surface potential decay of polymers for electrical insulation can help to determine the dark conductivity for spacecraft charging analysis. Due to the existence of radiation-induced conductivity, it decays fast in the first few hours after irradiation and exponentially slowly for the remaining time. The measurement of dark conductivity with this method usually takes the slow part and needs a couple of days. Integrating the Fowler formula into the deep dielectric charging equations, we obtain a new expression for the fast decay part. The experimental data of different materials, dose rates and temperatures are fitted by the new expression. Both the dark conductivity and the radiation-induced conductivity are derived and compared with other methods. The result shows a good estimation of dark conductivity and radiation-induced conductivity in high-resistivity polymers, which enables a fast measurement of dielectric conductivity within about 600 rain after irradiation.
文摘We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlat- rices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged w^ve number. The magnetic and eleetr/c potentials modify the energy band structure and transmission spectrum in entirely diverse ways. In addition, the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states. The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.
文摘Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.