Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.展开更多
Thermoelectric air conditioning systems based on the Peltier effect had two modes:heating and cooling.In this work,the proposed design provides continuous improvement in COP from the first minute of operation.In cooli...Thermoelectric air conditioning systems based on the Peltier effect had two modes:heating and cooling.In this work,the proposed design provides continuous improvement in COP from the first minute of operation.In cooling mode,the coefficient of performance(COP)was 1.176 due to the techniques used in this device,and it increased to 1.24 in the last minute of operation.Concerning the steady-state scenario,from the first minute,the Qc was larger than the W for the entire duration of the operation.The output temperature reaches 18.97℃ ,and the temperature on the cold side reaches 4.96℃ in the fifteen minutes of operation.The cooling mood was checked in Iraq/Baghdad in October with a temperature of 31℃ .Furthermore,the heating mode was checked in December with a temperature of 22℃ .Due to the size of the component on the cold side being small compared with the size of the component on the heat side,it reached a steady state in 13 min.This means the COP in heating mode reached 1.01 in 14 min.Furthermore,due to the presence of a thermal insulator made inside the device to separate the cold side and the hot side,the difference in temperature causes a noticeable little ascent.This is why the COP increased because it kept the degree differences low.Performance enhancements were achieved by optimizing the behavior of thermoelectric materials.The device contains 3 Peltier elements,a water-cooled system with one Peltier,a heat sink,and a fan.The design of the dehumidification system addresses the humidity issue commonly associated with thermoelectric air conditioners.In this context,the results indicate that the humidity rates had decreased and the cooling rate had increased with these innovative techniques,and thus,excellent performance can be achieved even if the Seebeck coefficient is not at its highest based on the condition of providing the Peltier elements’reliability and optimal thermal performance for various applications requiring both cooling and heating functions.The insulation plays a critical role in maintaining the efficiency of the system,reducing energy consumption,and ensuring long-term functionality.The proposed system is valuable for devices or environments that demand precise and dual thermal control with minimal energy wastage.展开更多
Cardiac arrest(CA)is a major global public health challenge,and its high morbidity and low survival rate pose severe tests for emergency and critical care.Although modern CPR techniques significantly improve the immed...Cardiac arrest(CA)is a major global public health challenge,and its high morbidity and low survival rate pose severe tests for emergency and critical care.Although modern CPR techniques significantly improve the immediate resuscitation success rate in CA patients,poor outcomes such as neurological impairment still significantly increase the long-term care burden and reduce the quality of survival.In recent years,the application of remote ischemic conditioning(RIC)has attracted much attention in the field of cardiac arrest through its unique myocardial-nerve dual protection mechanism against the heart.This paper summarizes the conceptual connotation,physiological mechanism,operation method,and its application progress in CA and explores the potential of this technology in the field of CA care in order to provide reference for the research and application of RIC in the field of emergency care.展开更多
LDACs(liquid desiccant air-conditioners)with heat pump can perform cooling dehumidification or heating humidification,and have high energy-saving and sterilization performance.Therefore,they are installed in hospitals...LDACs(liquid desiccant air-conditioners)with heat pump can perform cooling dehumidification or heating humidification,and have high energy-saving and sterilization performance.Therefore,they are installed in hospitals,nursing homes,and food factories,where humidity control is required.However,LiCl(lithium chloride),a conventional humidity control liquid,is highly corrosive to metals,requiring the use of highly corrosion-resistant materials for the pipes and the heat exchangers.These lead to the problem that the manufacturing cost of the air conditioner increases.Therefore,we developed an inexpensive and compact LDAC by adopting a novel IL(ionic liquid)that does not corrode the metals commonly used in air conditioners.In this study,we evaluated the metal solubilities and sterilizing properties of the IL.Based on the physical properties of the IL,the humidity control module was improved for the purpose of downsizing and cost reduction of the unit.Moreover,we conducted a performance evaluation of the LDAC in the environmental test room under the condition in which temperature and humidity change rapidly in short period of time to simulate the condition of sudden showers of rain in summer.Test results showed that processed air was supplied at very stable level.展开更多
As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy ...As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy consumption,how to improve the energy efficiency ratio of air conditioning systems and reduce energy consumption has become an important issue in research and practice.The purpose of this paper is to discuss the impact of humidity control strategies on energy saving in centralized central air conditioning systems,with a view to providing a theoretical basis and practical guidance for realizing building energy efficiency.展开更多
In the background of reform of higher education in the new era,how to organically integrate innovation and entrepreneurship education with curriculum ideology and politics has become a key proposition for deepening th...In the background of reform of higher education in the new era,how to organically integrate innovation and entrepreneurship education with curriculum ideology and politics has become a key proposition for deepening the reform of education and teaching.As an important branch in the field of engineering,the refrigeration and air conditioning major not only undertakes the professional mission of cultivating technical talents in the industry,but also shoulders the era responsibility of implementing the fundamental task of cultivating morality and talents.Combining with the characteristics of the refrigeration and air conditioning major,this paper systematically analyzes the internal logic and practical significance of the integration of innovation and entrepreneurship education and curriculum ideology and politics,and explores its implementation paths in aspects such as the excavation of curriculum content,the innovation of teaching methods,the construction of practical platforms and the optimization of evaluation systems.It aims to provide practical reference and theoretical support for promoting the collaborative education of professional education and ideological and political education.展开更多
Recent genome studies indicate that tree shrew is in the order or a closest sister of primates,and thus may be one of the best animals to model human diseases.In this paper,we report on a social defeat model of depres...Recent genome studies indicate that tree shrew is in the order or a closest sister of primates,and thus may be one of the best animals to model human diseases.In this paper,we report on a social defeat model of depression in tree shrew(Tupaia belangeri chinensis).Two male tree shrews were housed in a pair-cage consisting of two independent cages separated by a wire mesh partition with a door connecting the two cages.After one week adaptation,the connecting door was opened and a brief fighting occurs between the two male tree shrews and this social conflict session consisted of 1 h direct conflict(fighting) and 23 h indirect influence(e.g.smell,visual cues) per day for 21 days.The defeated tree shrew was considered the subordinate.Compared with na?ve animals,subordinate tree shrews at the final week of social conflict session showed alterations in body weight,locomotion,avoidance behavior and urinary cortisol levels.Remarkably,these alterations persisted for over two weeks.We also report on a novel captive conditioning model of learning and memory in tree shrew.An automatic trapping cage was placed in a small closed room with a freely-moving tree shrew.For the first four trials,the tree shrew was not trapped when it entered the cage and ate the bait apple,but it was trapped and kept in the cage for 1 h on the fifth trial.Latency was defined as the time between release of the tree shrew and when it entered the captive cage.Latencies during the five trials indicated adaptation.A test trial 24 h later was used to measure whether the one-trial trapping during the fifth trial could form captive memory.Tree shrews showed much longer trapping latencies in the test trial than the adaptation trials.The N-methyl-d-aspartate(NMDA) receptor antagonist MK-801(0.2 mg/kg,i.p.),known to prevent the formation of memory,did not affect latencies in the adaptation trails,but did block captive memory as it led to much shorter trapping latencies compared to saline treatment in the test trial.These results demonstrate a chronic social defeat model of depression and a novel one-trial captive conditioning model for learning and memory in tree shrews,which are important for mechanism studies of depression,learning,memory,and preclinical evaluation for new antidepressants.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w...An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.展开更多
This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim...Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim to control the spread of neuroinflammation during the acute phase but later hinder axon regeneration in later stages.Recent studies have enhanced our understanding of immunomodulation,revealing that injury-associated inflammation involves various cell types and molecules with positive and negative effects.This review employs bibliometric analysis to examine the literature on inflammatory mediators in spinal cord injury,highlighting recent research and providing a comprehensive overview of the current state of research and the latest advances in studies on neuroinflammation related to spinal cord injury.We summarize the immune and inflammatory responses at different stages of spinal cord injury,offering crucial insights for future research.Additionally,we review repair strategies based on inflammatory mediators for the injured spinal cord.Finally,this review discusses the current status and future directions of translational research focused on immune-targeting strategies,including pharmaceuticals,biomedical engineering,and gene therapy.The development of a combined,precise,and multitemporal strategy for the repair of injured spinal cords represents a promising direction for future research.展开更多
The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regul...The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health.展开更多
Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells en...Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells encounter various obstacles,including limited tissue sources,invasive acquisition methods,cellular heterogeneity,purification challenges,cellular senescence,and diminished pluripotency and proliferation over successive passages.In this study,we used induced pluripotent stem cell-derived mesenchymal stem cells,known for their self-renewal capacity,multilineage differentiation potential,and immunomodulatory characteristics.We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury.Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation.Furthermore,the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats.Additionally,our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization.Collectively,our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats,offering promising therapeutic strategies for clinical translation.展开更多
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280)the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
文摘Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.
文摘Thermoelectric air conditioning systems based on the Peltier effect had two modes:heating and cooling.In this work,the proposed design provides continuous improvement in COP from the first minute of operation.In cooling mode,the coefficient of performance(COP)was 1.176 due to the techniques used in this device,and it increased to 1.24 in the last minute of operation.Concerning the steady-state scenario,from the first minute,the Qc was larger than the W for the entire duration of the operation.The output temperature reaches 18.97℃ ,and the temperature on the cold side reaches 4.96℃ in the fifteen minutes of operation.The cooling mood was checked in Iraq/Baghdad in October with a temperature of 31℃ .Furthermore,the heating mode was checked in December with a temperature of 22℃ .Due to the size of the component on the cold side being small compared with the size of the component on the heat side,it reached a steady state in 13 min.This means the COP in heating mode reached 1.01 in 14 min.Furthermore,due to the presence of a thermal insulator made inside the device to separate the cold side and the hot side,the difference in temperature causes a noticeable little ascent.This is why the COP increased because it kept the degree differences low.Performance enhancements were achieved by optimizing the behavior of thermoelectric materials.The device contains 3 Peltier elements,a water-cooled system with one Peltier,a heat sink,and a fan.The design of the dehumidification system addresses the humidity issue commonly associated with thermoelectric air conditioners.In this context,the results indicate that the humidity rates had decreased and the cooling rate had increased with these innovative techniques,and thus,excellent performance can be achieved even if the Seebeck coefficient is not at its highest based on the condition of providing the Peltier elements’reliability and optimal thermal performance for various applications requiring both cooling and heating functions.The insulation plays a critical role in maintaining the efficiency of the system,reducing energy consumption,and ensuring long-term functionality.The proposed system is valuable for devices or environments that demand precise and dual thermal control with minimal energy wastage.
文摘Cardiac arrest(CA)is a major global public health challenge,and its high morbidity and low survival rate pose severe tests for emergency and critical care.Although modern CPR techniques significantly improve the immediate resuscitation success rate in CA patients,poor outcomes such as neurological impairment still significantly increase the long-term care burden and reduce the quality of survival.In recent years,the application of remote ischemic conditioning(RIC)has attracted much attention in the field of cardiac arrest through its unique myocardial-nerve dual protection mechanism against the heart.This paper summarizes the conceptual connotation,physiological mechanism,operation method,and its application progress in CA and explores the potential of this technology in the field of CA care in order to provide reference for the research and application of RIC in the field of emergency care.
文摘LDACs(liquid desiccant air-conditioners)with heat pump can perform cooling dehumidification or heating humidification,and have high energy-saving and sterilization performance.Therefore,they are installed in hospitals,nursing homes,and food factories,where humidity control is required.However,LiCl(lithium chloride),a conventional humidity control liquid,is highly corrosive to metals,requiring the use of highly corrosion-resistant materials for the pipes and the heat exchangers.These lead to the problem that the manufacturing cost of the air conditioner increases.Therefore,we developed an inexpensive and compact LDAC by adopting a novel IL(ionic liquid)that does not corrode the metals commonly used in air conditioners.In this study,we evaluated the metal solubilities and sterilizing properties of the IL.Based on the physical properties of the IL,the humidity control module was improved for the purpose of downsizing and cost reduction of the unit.Moreover,we conducted a performance evaluation of the LDAC in the environmental test room under the condition in which temperature and humidity change rapidly in short period of time to simulate the condition of sudden showers of rain in summer.Test results showed that processed air was supplied at very stable level.
文摘As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy consumption,how to improve the energy efficiency ratio of air conditioning systems and reduce energy consumption has become an important issue in research and practice.The purpose of this paper is to discuss the impact of humidity control strategies on energy saving in centralized central air conditioning systems,with a view to providing a theoretical basis and practical guidance for realizing building energy efficiency.
基金Undergraduate Teaching Research and Reform Project of the University of Shanghai for Science and Technology(Project No.:JGXM202526)。
文摘In the background of reform of higher education in the new era,how to organically integrate innovation and entrepreneurship education with curriculum ideology and politics has become a key proposition for deepening the reform of education and teaching.As an important branch in the field of engineering,the refrigeration and air conditioning major not only undertakes the professional mission of cultivating technical talents in the industry,but also shoulders the era responsibility of implementing the fundamental task of cultivating morality and talents.Combining with the characteristics of the refrigeration and air conditioning major,this paper systematically analyzes the internal logic and practical significance of the integration of innovation and entrepreneurship education and curriculum ideology and politics,and explores its implementation paths in aspects such as the excavation of curriculum content,the innovation of teaching methods,the construction of practical platforms and the optimization of evaluation systems.It aims to provide practical reference and theoretical support for promoting the collaborative education of professional education and ideological and political education.
基金supported by grants KSCX2-EW-R-12 and KSCX2-EW-J-23 from the Chinese Academy of Sciences
文摘Recent genome studies indicate that tree shrew is in the order or a closest sister of primates,and thus may be one of the best animals to model human diseases.In this paper,we report on a social defeat model of depression in tree shrew(Tupaia belangeri chinensis).Two male tree shrews were housed in a pair-cage consisting of two independent cages separated by a wire mesh partition with a door connecting the two cages.After one week adaptation,the connecting door was opened and a brief fighting occurs between the two male tree shrews and this social conflict session consisted of 1 h direct conflict(fighting) and 23 h indirect influence(e.g.smell,visual cues) per day for 21 days.The defeated tree shrew was considered the subordinate.Compared with na?ve animals,subordinate tree shrews at the final week of social conflict session showed alterations in body weight,locomotion,avoidance behavior and urinary cortisol levels.Remarkably,these alterations persisted for over two weeks.We also report on a novel captive conditioning model of learning and memory in tree shrew.An automatic trapping cage was placed in a small closed room with a freely-moving tree shrew.For the first four trials,the tree shrew was not trapped when it entered the cage and ate the bait apple,but it was trapped and kept in the cage for 1 h on the fifth trial.Latency was defined as the time between release of the tree shrew and when it entered the captive cage.Latencies during the five trials indicated adaptation.A test trial 24 h later was used to measure whether the one-trial trapping during the fifth trial could form captive memory.Tree shrews showed much longer trapping latencies in the test trial than the adaptation trials.The N-methyl-d-aspartate(NMDA) receptor antagonist MK-801(0.2 mg/kg,i.p.),known to prevent the formation of memory,did not affect latencies in the adaptation trails,but did block captive memory as it led to much shorter trapping latencies compared to saline treatment in the test trial.These results demonstrate a chronic social defeat model of depression and a novel one-trial captive conditioning model for learning and memory in tree shrews,which are important for mechanism studies of depression,learning,memory,and preclinical evaluation for new antidepressants.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
文摘An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
基金supported by the National Natural Science Foundation of China,Nos.82272470 (to GN),82072439 (to GN),81930070 (to SF)the Tianjin Health Key Discipline Special Project,No.TJWJ2022XK011 (to GN)+2 种基金the Outstanding Youth Foundation of Tianjin Medical University General Hospital,No.22ZYYJQ01 (to GN)Tianjin Key Medical Disciplines,No.TJYXZDXK-027A (to SF)National Key Research and Development Program-Stem Cells and Transformation Research,No.2019YFA0112100 (to SF)
文摘Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim to control the spread of neuroinflammation during the acute phase but later hinder axon regeneration in later stages.Recent studies have enhanced our understanding of immunomodulation,revealing that injury-associated inflammation involves various cell types and molecules with positive and negative effects.This review employs bibliometric analysis to examine the literature on inflammatory mediators in spinal cord injury,highlighting recent research and providing a comprehensive overview of the current state of research and the latest advances in studies on neuroinflammation related to spinal cord injury.We summarize the immune and inflammatory responses at different stages of spinal cord injury,offering crucial insights for future research.Additionally,we review repair strategies based on inflammatory mediators for the injured spinal cord.Finally,this review discusses the current status and future directions of translational research focused on immune-targeting strategies,including pharmaceuticals,biomedical engineering,and gene therapy.The development of a combined,precise,and multitemporal strategy for the repair of injured spinal cords represents a promising direction for future research.
基金supported by grants from Simons Foundation (SFARI 479754),CIHR (PJT-180565)the Scottish Rite Charitable Foundation of Canada (to YL)funding from the Canada Research Chairs program。
文摘The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health.
基金supported by a grant from NIH(R01AI132695)to RM。
文摘Chronic wasting disease—a prion disease affecting cervids:Many neurological conditions,including Alzheimer's and Parkinson's diseases,amyotrophic lateral sclerosis,frontotemporal dementias,among others,are caused by the accumulation of misfolded proteins in the brain.These diseases affect not only humans,but also animals.
基金supported by the National Natural Science Foundation of China,No.32171356(to YW)Self-Support Research Projects of Shihezi University,No.ZZZC2021105(to WJ)+1 种基金Capital Medical University Natural Science Cultivation Fund,No.PYZ23044(to FQM)Beijing Municipal Natural Science Foundation,No.7244410(to JHD)。
文摘Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells.However,adult tissue–derived mesenchymal stem cells encounter various obstacles,including limited tissue sources,invasive acquisition methods,cellular heterogeneity,purification challenges,cellular senescence,and diminished pluripotency and proliferation over successive passages.In this study,we used induced pluripotent stem cell-derived mesenchymal stem cells,known for their self-renewal capacity,multilineage differentiation potential,and immunomodulatory characteristics.We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury.Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation.Furthermore,the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats.Additionally,our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization.Collectively,our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats,offering promising therapeutic strategies for clinical translation.