We consider a distribution system with one supplier and two retailers. For the two retailers, they face different demand and are both risk averse. We study a single period model which the supplier has ample goods and ...We consider a distribution system with one supplier and two retailers. For the two retailers, they face different demand and are both risk averse. We study a single period model which the supplier has ample goods and the retailers order goods separately. Market search is measured as the fraction of customers who unsatisfied with their "local" retailer due to stock-out, and search for the goods at the other retailer before leaving the system. We investigate how the retailers game for order quantity in a Conditional Value-at-Risk framework and study how risk averse degree, market search level, holding cost and backorder cost influence the optimal order strategies. Furthermore, we use uniform distribution to illustrate these results and obtain Nash equilibrium of order strategies.展开更多
We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional va...We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered.展开更多
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
This paper investigates a risk-averse inventory model by balancing the expected profit and conditional value-at-risk (CVaR) in a newsvendor model setting. We find out that: i) The optimal order quantity is increas...This paper investigates a risk-averse inventory model by balancing the expected profit and conditional value-at-risk (CVaR) in a newsvendor model setting. We find out that: i) The optimal order quantity is increasing in the shortage cost for both the CVaR only criterion and the tradeoff objective, ii) For the case of zero shortage cost, the optimal order quantity to the CVaR criterion or tradeoff objective is increasing in the selling price, respectively. However, it may not be monotonic in the selling price when incorporating a substantial shortage cost. Moreover, it may be larger or less than the risk-neutral solution, iii) Under the tradeoff objective function, although the optimal order quantity for the model without shortage cost is increasing in the weight put on the expected profit, this property may not be true in general for the model with a substantial shortage cost. Some numerical examples are conducted to verify our results and observations.展开更多
For optimizing the water-use structure and increasing plantation benefit of unit water consumption,a multi-objective model for water resources utilization was established based on fractional programming(FP).Meanwhile,...For optimizing the water-use structure and increasing plantation benefit of unit water consumption,a multi-objective model for water resources utilization was established based on fractional programming(FP).Meanwhile,considering the stochasticity of water availability in the study area,the impact of the risk factor(λ)from a quantitative and qualitative perspective was analyzed.The chance-constrained programming(CCP)and conditional value-at-risk(CVaR)models were introduced into five important major grain production areas in Sanjiang Plain,and the crop planting structure under this condition was optimized.The results showed that,after optimization,overall benefit of cultivation increased from 42.07 billion Yuan to 42.47 billion Yuan,water consumption decreased from 15.90 billion m3 to 11.95 billion m3,the plantation benefit of unit water consumption increased from 2.65 Yuan/m3 to 3.55 Yuan/m3.Furthermore,the index of water consumption,benefit of cultivation and plantation benefit of unit water consumption showed an increasing trend with the increase of violation likelihood.However,through the quantification ofλfrom an economic perspective,the increasing ofλcould not enhance plantation benefit of unit water consumption significantly.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induc...We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.展开更多
Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribu...Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.展开更多
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ...Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.展开更多
The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic...The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.展开更多
A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ...A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.展开更多
The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availabi...The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availability and is constrained by air temperature,it is important to project the changes in the distribution of atmospheric humidity conditional on air temperature as the climate continuously warms.Here,a non-crossing quantile smoothing spline is employed to build quantile regression models emulating conditional distributions of dew point(a measure of humidity)on local temperature evolving with escalating global mean surface temperature.By applying these models to 297 weather stations in seven regions in China,the study analyzes historical trends of humid-heat and dry-hot days,and projects their changes under global warming of 2.0℃ and 4.5℃.In response to global warming,rising trends of humid-heat extremes,while weakening trends of dry-hot extremes,are observed at most stations in Northeast China.Additionally,results indicate an increasing trend in dry-hot extremes at numerous stations across central China,but a rise in humid-heat extremes over Northwest China and coastal regions.These trends found in the current climate state are projected to intensify under 2.0℃ and 4.5℃ warming,possibly influenced by the heterogeneous variations in precipitation,soil moisture,and water vapor fluxes.Requiring much lower computational resources than coupled climate models,these quantile regression models can further project compound humidity and temperature extremes in response to different levels of global warming,potentially informing the risk management of compound humid-heat extremes on a local scale.展开更多
Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies...Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies.展开更多
Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than...Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than standard relative survival(RS).This study aims to evaluate the 5-year CRS among adolescent and young adult(AYA)breast cancer patients by age,tumor stage,and receptor subtype to guide disclosure periods for insurance.Methods Data of all females aged 18–39 years and diagnosed with invasive breast cancer between 2003 and 2021(n=13,075)were obtained from The Netherlands Cancer Registry(NCR).The five-year CRS was calculated annually up to 10 years post-diagnosis using a hybrid analysis approach.Results For the total AYA breast cancer study population the 5-year CRS exceeded 90%from diagnosis and increased beyond 95%7 years post-diagnosis.Patients aged 18–24 reached 95%9 years post-diagnosis,those aged 25–29 after 5 years,and those aged 30–34 and 35–39 after 8 years.For stage I,the 5-year CRS reached 95%from diagnosis,for stage II after 6 years,while the 5-year CRS for stages III and IV did not reach the 95%threshold during the 10-year follow-up.Triple-negative tumors exceeded 95%after 4 years,human epidermal growth factor receptor 2(HER2)positive tumors after 6 years,while hormone receptor(HR)positive tumors did not reach 95%.Conclusion Excess mortality among AYA breast cancer patients tends to be little(CRS 90%–95%)from diagnosis and becomes minimal(CRS>95%)over time compared to the general population.These results can enhance expectation management and inform policymakers,suggesting a shorter disclosure period.展开更多
Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow ...Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.展开更多
A factorial mating design in two environments was conducted using 7 cytoplasmic male sterile lines (A) and 5 restorer lines (R) along with their F1 (A × R) and F2 populations. The unconditional and conditio...A factorial mating design in two environments was conducted using 7 cytoplasmic male sterile lines (A) and 5 restorer lines (R) along with their F1 (A × R) and F2 populations. The unconditional and conditional analyses of genetic models and the corresponding statistic methods, including endospermic, cytoplasmic, and maternal plant genetic systems, were used to analyze the genetic relationships between protein content (PC) and the appearance quality traits of indica rice (Oryza sativa L.). The results from unconditional analysis indicated that PC was significantly correlated with the appearance quality traits of rice, except for the brown rice thickness (BRT). Only the genetic covariance between PC and the brown rice width (BRW) was positively correlative, whereas all the other pairwise traits were negatively correlative. The results from conditional analysis revealed that the weight of brown rice (WBR) or the amylose content (AC) could significantly affect the relationships between PC and the appearance quality traits of indica rice. The conditional analysis showed that WBR might negatively affect the relationships between PC and the brown rice length (BRL), BRW, or BRT through the geuotype x environmental (GE) interaction effects, but positively affected the relationships between PC and the ratio of brown rice length to width (RLW) or the ratio of brown rice length to thickness (RLT). The amylase content could positively affect the relationships between PC and BRL, RLW, RLT through the cytoplasmic effects and maternal additive effects, but negatively affected the relationships between PC and BRW.展开更多
The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and d...The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.展开更多
A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are p...A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are presented. By approaches of nonlinear analysis some solvability results of this equation and continuous perturbation properties of the relative solution sets are obtained, and some economic significance are illustrated by the remark.展开更多
This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–Nati...This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error.展开更多
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simu...A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.展开更多
基金Supported by the National Natural Science Foundation of China (70471034, A0324666)
文摘We consider a distribution system with one supplier and two retailers. For the two retailers, they face different demand and are both risk averse. We study a single period model which the supplier has ample goods and the retailers order goods separately. Market search is measured as the fraction of customers who unsatisfied with their "local" retailer due to stock-out, and search for the goods at the other retailer before leaving the system. We investigate how the retailers game for order quantity in a Conditional Value-at-Risk framework and study how risk averse degree, market search level, holding cost and backorder cost influence the optimal order strategies. Furthermore, we use uniform distribution to illustrate these results and obtain Nash equilibrium of order strategies.
文摘We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered.
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
基金This research was supported by the Social Science Foundation of the Ministry of Education of China under Grant No. 07JA630015, the National Natural Science Foundation of China under Grant Nos. 70901059 and 70901029, and the Fundamental Research Funds for the Central Universities under Grant No. 105-275171.
文摘This paper investigates a risk-averse inventory model by balancing the expected profit and conditional value-at-risk (CVaR) in a newsvendor model setting. We find out that: i) The optimal order quantity is increasing in the shortage cost for both the CVaR only criterion and the tradeoff objective, ii) For the case of zero shortage cost, the optimal order quantity to the CVaR criterion or tradeoff objective is increasing in the selling price, respectively. However, it may not be monotonic in the selling price when incorporating a substantial shortage cost. Moreover, it may be larger or less than the risk-neutral solution, iii) Under the tradeoff objective function, although the optimal order quantity for the model without shortage cost is increasing in the weight put on the expected profit, this property may not be true in general for the model with a substantial shortage cost. Some numerical examples are conducted to verify our results and observations.
基金National Natural Science Foundation of China(51479032,51579044)Yangtze River Scholars in Universities of Heilongjiang Province and Water Conservancy Science and Technology Project of Heilongjiang Province(201318,201503)The Outstanding Youth Fund of Heilongjiang Province(JC201402).
文摘For optimizing the water-use structure and increasing plantation benefit of unit water consumption,a multi-objective model for water resources utilization was established based on fractional programming(FP).Meanwhile,considering the stochasticity of water availability in the study area,the impact of the risk factor(λ)from a quantitative and qualitative perspective was analyzed.The chance-constrained programming(CCP)and conditional value-at-risk(CVaR)models were introduced into five important major grain production areas in Sanjiang Plain,and the crop planting structure under this condition was optimized.The results showed that,after optimization,overall benefit of cultivation increased from 42.07 billion Yuan to 42.47 billion Yuan,water consumption decreased from 15.90 billion m3 to 11.95 billion m3,the plantation benefit of unit water consumption increased from 2.65 Yuan/m3 to 3.55 Yuan/m3.Furthermore,the index of water consumption,benefit of cultivation and plantation benefit of unit water consumption showed an increasing trend with the increase of violation likelihood.However,through the quantification ofλfrom an economic perspective,the increasing ofλcould not enhance plantation benefit of unit water consumption significantly.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.
文摘We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.
基金Programs for Science and Technology Development of Henan Province,grant number 242102210152The Fundamental Research Funds for the Universities of Henan Province,grant number NSFRF240620+1 种基金Key Scientific Research Project of Henan Higher Education Institutions,grant number 24A520015Henan Key Laboratory of Network Cryptography Technology,grant number LNCT2022-A11.
文摘Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B 187)。
文摘Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms.
基金supported by the National Natural Science Foundation of China (Grant No. 42288101, 42375062, 42476192, 42275158)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)the GHfund C (202407036001)
文摘The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.
基金supported by the National Social Science Fund of China(Grand No.21XTJ001).
文摘A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.
基金supported by the National Natural Science Foundation of China[grant number 42175066]the Shanghai International Science and Technology Partnership Project[grant number 21230780200].
文摘The likelihood of extreme heat occurrence is continuously increasing with global warming.Under high temperatures,humidity may exacerbate the heat impact on humanity.As atmospheric humidity depends on moisture availability and is constrained by air temperature,it is important to project the changes in the distribution of atmospheric humidity conditional on air temperature as the climate continuously warms.Here,a non-crossing quantile smoothing spline is employed to build quantile regression models emulating conditional distributions of dew point(a measure of humidity)on local temperature evolving with escalating global mean surface temperature.By applying these models to 297 weather stations in seven regions in China,the study analyzes historical trends of humid-heat and dry-hot days,and projects their changes under global warming of 2.0℃ and 4.5℃.In response to global warming,rising trends of humid-heat extremes,while weakening trends of dry-hot extremes,are observed at most stations in Northeast China.Additionally,results indicate an increasing trend in dry-hot extremes at numerous stations across central China,but a rise in humid-heat extremes over Northwest China and coastal regions.These trends found in the current climate state are projected to intensify under 2.0℃ and 4.5℃ warming,possibly influenced by the heterogeneous variations in precipitation,soil moisture,and water vapor fluxes.Requiring much lower computational resources than coupled climate models,these quantile regression models can further project compound humidity and temperature extremes in response to different levels of global warming,potentially informing the risk management of compound humid-heat extremes on a local scale.
文摘Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies.
基金supported by The Netherlands Organization for Scientific Research VIDI(grant number:198.007).
文摘Background Conditional relative survival(CRS),the probability of survival given that an individual has already survived a certain period post-diagnosis,is a more clinically relevant measure for long-term survival than standard relative survival(RS).This study aims to evaluate the 5-year CRS among adolescent and young adult(AYA)breast cancer patients by age,tumor stage,and receptor subtype to guide disclosure periods for insurance.Methods Data of all females aged 18–39 years and diagnosed with invasive breast cancer between 2003 and 2021(n=13,075)were obtained from The Netherlands Cancer Registry(NCR).The five-year CRS was calculated annually up to 10 years post-diagnosis using a hybrid analysis approach.Results For the total AYA breast cancer study population the 5-year CRS exceeded 90%from diagnosis and increased beyond 95%7 years post-diagnosis.Patients aged 18–24 reached 95%9 years post-diagnosis,those aged 25–29 after 5 years,and those aged 30–34 and 35–39 after 8 years.For stage I,the 5-year CRS reached 95%from diagnosis,for stage II after 6 years,while the 5-year CRS for stages III and IV did not reach the 95%threshold during the 10-year follow-up.Triple-negative tumors exceeded 95%after 4 years,human epidermal growth factor receptor 2(HER2)positive tumors after 6 years,while hormone receptor(HR)positive tumors did not reach 95%.Conclusion Excess mortality among AYA breast cancer patients tends to be little(CRS 90%–95%)from diagnosis and becomes minimal(CRS>95%)over time compared to the general population.These results can enhance expectation management and inform policymakers,suggesting a shorter disclosure period.
基金The National Natural Science Foundation of China(No60663004)the PhD Programs Foundation of Ministry of Educa-tion of China (No20050007023)
文摘Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs model is trained to label the predicates' semantic roles in a sentence. The key of the method is parameter estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter estimation, and three category features: features based on sentence constituents, features based on predicate, and predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy model, and can achieve 80. 43 % precision and 63. 55 % recall for semantic role labeling.
基金This work was supported by National Natural Science Foundation of China (No. 30571198) and the Science and Technology Office of Zhejiang Province (No. 2004C2020-2 and No. 011102471).
文摘A factorial mating design in two environments was conducted using 7 cytoplasmic male sterile lines (A) and 5 restorer lines (R) along with their F1 (A × R) and F2 populations. The unconditional and conditional analyses of genetic models and the corresponding statistic methods, including endospermic, cytoplasmic, and maternal plant genetic systems, were used to analyze the genetic relationships between protein content (PC) and the appearance quality traits of indica rice (Oryza sativa L.). The results from unconditional analysis indicated that PC was significantly correlated with the appearance quality traits of rice, except for the brown rice thickness (BRT). Only the genetic covariance between PC and the brown rice width (BRW) was positively correlative, whereas all the other pairwise traits were negatively correlative. The results from conditional analysis revealed that the weight of brown rice (WBR) or the amylose content (AC) could significantly affect the relationships between PC and the appearance quality traits of indica rice. The conditional analysis showed that WBR might negatively affect the relationships between PC and the brown rice length (BRL), BRW, or BRT through the geuotype x environmental (GE) interaction effects, but positively affected the relationships between PC and the ratio of brown rice length to width (RLW) or the ratio of brown rice length to thickness (RLT). The amylase content could positively affect the relationships between PC and BRL, RLW, RLT through the cytoplasmic effects and maternal additive effects, but negatively affected the relationships between PC and BRW.
文摘The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.
文摘A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are presented. By approaches of nonlinear analysis some solvability results of this equation and continuous perturbation properties of the relative solution sets are obtained, and some economic significance are illustrated by the remark.
基金jointly sponsored by the National Key Research and Development Program of China (2018YFC1506402)the National Natural Science Foundation of China (Grant Nos.41475100 and 41805081)the Global Regional Assimilation and Prediction System Development Program of the China Meteorological Administration (GRAPES-FZZX2018)
文摘This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error.
基金provided by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao (Grant No.11-1-4-95-jch)the National Natural Science Foundation of China (Grant No. 40821092)
文摘A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.