期刊文献+
共找到161篇文章
< 1 2 9 >
每页显示 20 50 100
Data-driven framework based on machine learning and optimization algorithms to predict oxide-zeolite-based composite and reaction conditions for syngas-to-olefin conversion
1
作者 Mansurbek Urol ugli Abdullaev Woosong Jeon +5 位作者 Yun Kang Juhwan Noh Jung Ho Shin Hee-Joon Chun Hyun Woo Kim Yong Tae Kim 《Chinese Journal of Catalysis》 2025年第7期211-227,共17页
Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resour... Bifunctional oxide-zeolite-based composites(OXZEO)have emerged as promising materials for the direct conversion of syngas to olefins.However,experimental screening and optimization of reaction parameters remain resource-intensive.To address this challenge,we implemented a three-stage framework integrating machine learning,Bayesian optimization,and experimental validation,utilizing a carefully curated dataset from the literature.Our ensemble-tree model(R^(2)>0.87)identified Zn-Zr and Cu-Mg binary mixed oxides as the most effective OXZEO systems,with their light olefin space-time yields confirmed by physically mixing with HSAPO-34 through experimental validation.Density functional theory calculations further elucidated the activity trends between Zn-Zr and Cu-Mg mixed oxides.Among 16 catalyst and reaction condition descriptors,the oxide/zeolite ratio,reaction temperature,and pressure emerged as the most significant factors.This interpretable,data-driven framework offers a versatile approach that can be applied to other catalytic processes,providing a powerful tool for experiment design and optimization in catalysis. 展开更多
关键词 Syngas-to-olefin Oxide-zeolite-based composite Machine learning Bayesian optimization Catalyst and reaction engineering discovery Reaction condition optimization Density functional theory
在线阅读 下载PDF
An Extension of Conditional Nonlinear Optimal Perturbation in the Time Dimension and Its Applications in Targeted Observations
2
作者 Ziqing ZU Mu MU +1 位作者 Jiangjiang XIA Qiang WANG 《Advances in Atmospheric Sciences》 2025年第9期1783-1797,共15页
The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic... The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension. 展开更多
关键词 deep-learning forecasting model conditional nonlinear optimal perturbation targeted observation sensitive area
在线阅读 下载PDF
Higher-order optimality conditions for multiobjective optimization through a new type of directional derivatives
3
作者 HUANG Zheng-gang 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期543-557,共15页
This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n... This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there. 展开更多
关键词 strict local minima of order k multiobjective optimization higher-order optimality conditions higher-order directional derivatives
在线阅读 下载PDF
Optimality Conditions for Double-sparsity Constrained Optimization
4
作者 WANG Dongrui XIU Naihua ZHOU Shenglong 《数学进展》 CSCD 北大核心 2024年第6期1145-1157,共13页
Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the... Sparse optimization has witnessed advancements in recent decades,and the step function finds extensive applications across various machine learning and signal processing domains.This paper integrates zero norm and the step function to formulate a doublesparsity constrained optimization problem,wherein a linear equality constraint is also taken into consideration.By defining aτ-Lagrangian stationary point and a KKT point,we establish the first-order and second-order necessary and sufficient optimality conditions for the problem.Furthermore,we thoroughly elucidate their relationships to local and global optimal solutions.Finally,special cases and examples are presented to illustrate the obtained theorems. 展开更多
关键词 double-sparsity constrained optimization Lagrangian stationary point KKT point optimality condition
原文传递
A Modified Lagrange Method for Solving Convex Quadratic Optimization Problems
5
作者 Twum B. Stephen Avoka John Christian J. Etwire 《Open Journal of Optimization》 2024年第1期1-20,共20页
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o... In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions. 展开更多
关键词 Quadratic Programming Lagrangian Function Lagrange Multipliers Optimality Conditions Subsidiary Equations Modified Lagrange Method
在线阅读 下载PDF
A splicing algorithm for best subset selection in sliced inverse regression
6
作者 Borui Tang Jin Zhu +1 位作者 Tingyin Wang Junxian Zhu 《中国科学技术大学学报》 北大核心 2025年第5期22-34,21,I0001,共15页
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re... In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors. 展开更多
关键词 splicing technique best subset selection sliced inverse regression nonconvex optimization sparsity constraint optimal conditions
在线阅读 下载PDF
A New Method to Calculate Nonlinear Optimal Perturbations for Ensemble Forecasting
7
作者 Junjie MA Wansuo DUAN +1 位作者 Zhuomin LIU Ye WANG 《Advances in Atmospheric Sciences》 2025年第5期952-967,共16页
Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi... Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events. 展开更多
关键词 initial uncertainty conditional nonlinear optimal perturbation optimization method ensemble forecasting
在线阅读 下载PDF
Application of algal-mycelial pellets in the treatment of the mariculture wastewater
8
作者 Shanshan Chen Sujie Li +5 位作者 Xunan Yang Yaobin Lu Lijuan Luo Jie Xu Kin-Chuang Ho Tiangang Luan 《Journal of Environmental Sciences》 2025年第8期128-137,共10页
Hypersaline mariculture wastewater necessitates treatment prior to its discharge into marine environments.Algal-mycelial pellets(AMPs),known for their cost-effectiveness,energy efficiency and sustainability,have not b... Hypersaline mariculture wastewater necessitates treatment prior to its discharge into marine environments.Algal-mycelial pellets(AMPs),known for their cost-effectiveness,energy efficiency and sustainability,have not been previously explored for their flocculation and pollutant removal capabilities in hyperhaline conditions.This work employed an orthogonal test design to investigate the effects of nine factors at three levels on the treatment efficiency of mariculture wastewater using Chlorella sp.TNBR1 and Aspergillus niger AMPs.The comprehensive optimal conditions for achieving the highest flocculation efficiency and pollutant removal are determined to be a temperature of 30℃,light intensity of 6000 lux,a 12:0 light-dark cycle,an initial pH of 6,amicroalgal density of 11.25×10^(6)cell/mL,microalgal growth phase at the early logarithmic stage,a fungal spore density of 9.00×10^(5)spore/mL and a fungal pellet phase of 60 h.Under such conditions,the treatment of nonsterile actual mariculture wastewater with Chlorella sp.TNBR1 and Aspergillus niger AMPs results in a 93.35%±7.20%reduction in chemical oxygen demand(COD),92.83%±7.29%reduction in total nitrogen(TN),100%removal of total phosphorus(TP),and a flocculation efficiency of 69.21%±5.36%.These findings confirm that AMPs are a viable solution for effectively treating COD,TN and TP in real hypersaline mariculture wastewater,while also facilitating the flocculation and harvesting of microalgae. 展开更多
关键词 Algal-mycelial pellet Mariculture wastewater Optimal condition Pollutant removal Flocculation efficiency
原文传递
An Optimal Control Problem to a Generalized Diffusion SEIR Model with Two Strains
9
作者 Jinfeng MAO Min ZHOU 《Journal of Mathematical Research with Applications》 2025年第5期689-710,共22页
This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-d... This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-diffusion epidemic model with two strains.Furthermore,applying vaccines as a control strategy in the model,an optimal control problem is proposed to increase the number of healthy individuals while reducing control costs.By applying the truncation function technique and the operator semigroup methods,we prove the existence and uniqueness of a globally positive strong solution for the control model.The existence of the optimal control strategy is proven by using functional analysis theory and minimum sequence methods.The first-order necessary condition satisfied by the optimal control is established by employing the dual techniques.Finally,a specific example and its algorithm are provided. 展开更多
关键词 Epidemic model optimal control the first order necessary optimality condition reaction-diffusion equations
原文传递
Application of the Conditional Nonlinear Optimal Perturbation Method to the Predictability Study of the Kuroshio Large Meander 被引量:25
10
作者 WANG Qiang MU Mu Henk A.DIJKSTRA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第1期118-134,共17页
A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simu... A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates. 展开更多
关键词 conditional nonlinear optimal perturbation Kuroshio large meander PREDICTABILITY model parameters
在线阅读 下载PDF
CONE-DIRECTED CONTINGENT DERIVATIVES AND GENERALIZED PREINVEX SET-VALUED OPTIMIZATION 被引量:10
11
作者 丘京辉 《Acta Mathematica Scientia》 SCIE CSCD 2007年第1期211-218,共8页
By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
关键词 Preinvex set-valued optimization cone-directed contingent derivative optimality conditions
在线阅读 下载PDF
A Variant Constrained Genetic Algorithm for Solving Conditional Nonlinear Optimal Perturbations 被引量:6
12
作者 ZHENG Qin SHA Jianxin +1 位作者 SHU Hang LU Xiaoqing 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期219-229,共11页
A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of th... A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of the constraint condition in VCGA is relatively easy to implement. Moreover, it does not require adjustments to indefinite pararneters. Using a hybrid crossover operator and the newly developed multi-ply mutation operator, VCGA improves the performance of GAs. To demonstrate the capability of VCGA to catch CNOPS in non-smooth cases, a partial differential equation, which has "on off" switches in its forcing term, is employed as the nonlinear model. To search global CNOPs of the nonlinear model, numerical experiments using VCGA, the traditional gradient descent algorithm based on the adjoint method (ADJ), and a GA using tournament selection operation and the niching technique (GA-DEB) were performed. The results with various initial reference states showed that, in smooth cases, all three optimization methods are able to catch global CNOPs. Nevertheless, in non-smooth situations, a large proportion of CNOPs captured by the ADJ are local. Compared with ADJ, the performance of GA-DEB shows considerable improvement, but it is far below VCGA. Further, the impacts of population sizes on both VCGA and GA-DEB were investigated. The results were used to estimate the computation time of ~CGA and GA-DEB in obtaining CNOPs. The computational costs for VCGA, GA-DEB and ADJ to catch CNOPs of the nonlinear model are also compared. 展开更多
关键词 genetic algorithm conditional nonlinear optimal perturbation "on-off" switch adjoint rrtethod
在线阅读 下载PDF
OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION 被引量:5
13
作者 Tadeusz ANTCZAK 《Acta Mathematica Scientia》 SCIE CSCD 2017年第4期1133-1150,共18页
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult... In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex. 展开更多
关键词 nonsmooth multiobjective programming problem with the multiple interval- objective function Fritz John necessary optimality conditions Karush-Kuhn- Tucker necessary optimality conditions (weakly) LU-efficient solution Mond- Weir duality
在线阅读 下载PDF
ε-strongly Efficient Solutions for Vector Optimization with Set-valued Maps 被引量:10
14
作者 WANG Qi-liu 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期104-109,共6页
In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under ... In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained. 展开更多
关键词 vector optimization ε-strongly efficient point nearly cone-subconvexlike setvalued maps ε-strongly efficient solutions the theorem of scalarization optimality conditions
在线阅读 下载PDF
Optimization of elastolysis conditions and elastolytic kinetic analysis with elastase from Bacillus licheniformis ZJUEL31410 被引量:2
15
作者 CHEN Qi-he HE Guo-qing 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第6期482-490,共9页
The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate co... The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate complex has no physical meaning. In this paper we report the optimization of elastolysis conditions and analysis of elastolytic kinetics. Our results indicated that the hydrolyzing temperature and time are very important factors affecting elastolysis rate. The optimized conditions using central composite design were as follows: elastolysis temperature 50 ℃, elastase concentration 1 × 10^4 U/ml, elastin 80 mg, elastolytic time 4 h. Investigation of the effects of substrate content, elastase concentration and pH was also revealed that low or high elastin content inhibits the elastolysis process. Increasingelastase improves elastin degradation, but high elastase may change the kinetics characterization. Alkaline environment can decrease elastin degradation rate and pH may affect elastolysis by changing elastase reaction pH. To further elucidate the elastolysis process, the logistic model was used to elastolysis kinetics study showing clearly that the logistic model can reasonably explain the elastolysis process, especially under lower elastase concentration. However, there is still need for more investigations with the aid of other methods, such as biochemical and molecular methods. 展开更多
关键词 Bacillus licheniformis ELASTASE Elastolysis condition optimization Elastolytic kinetics
在线阅读 下载PDF
A New Approach for Parameter Optimization in Land Surface Model 被引量:3
16
作者 李红祺 郭维栋 +2 位作者 孙国栋 张耀存 符淙斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1056-1066,共11页
In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observation... In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyu station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple-and six-parameter optimizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs. 展开更多
关键词 land surface model parameter optimization conditional nonlinear optimal perturbation (CNOP)
在线阅读 下载PDF
Algorithm Studies on How to Obtain a Conditional Nonlinear Optimal Perturbation (CNOP) 被引量:2
17
作者 孙国栋 穆穆 张雅乐 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1311-1321,共11页
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO ... The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem. 展开更多
关键词 conditional nonlinear optimal perturbation constrained optimization problem unconstrainedoptimization problem
在线阅读 下载PDF
KUHN-TUCKER CONDITION AND WOLFE DUALITY OF PREINVEX SET-VALUED OPTIMIZATION 被引量:2
18
作者 盛宝怀 刘三阳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1655-1664,共10页
The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function... The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative. 展开更多
关键词 preinvex set-valued function contingent epiderivatives optimality conditions DUALITY
在线阅读 下载PDF
Application of the Conditional Nonlinear Optimal Perturbations Method in a Theoretical Grassland Ecosystem 被引量:2
19
作者 WANG Bo WANG Jian-ping +2 位作者 HUO Zhen-hua ZHANG Pei-jun WANG Qiang 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第3期422-429,共8页
Using a simplified nonlinearly theoretical grassland ecosystem proposed by Zeng et al.,we study the sensitivity and nonlinear instability of the grassland ecosystem to finiteamplitude initial perturbations with the ap... Using a simplified nonlinearly theoretical grassland ecosystem proposed by Zeng et al.,we study the sensitivity and nonlinear instability of the grassland ecosystem to finiteamplitude initial perturbations with the approach of conditional nonlinear optimal perturbation (CNOP).The results show that the linearly stable grassland (desert or latent desert) states can turn to be nonlinearly unstable with finite amplitude initial perturbations.When the precipitation is between the two bifurcation points,a large enough finite amplitude initial perturbation can induce a transition between the grassland statethe desert state or the latent desert. 展开更多
关键词 conditional nonlinear optimal perturbation grassland ecosystem sensitivity nonlinear instability equilibrium state
在线阅读 下载PDF
THE OPTIMALITY CONDITIONS OF NONCONVEXSET-VALUED VECTOR OPTIMIZATION 被引量:2
20
作者 盛保怀 刘三阳 《Acta Mathematica Scientia》 SCIE CSCD 2002年第1期47-55,共9页
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh... The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient. 展开更多
关键词 set-valued derivative optimality condition pseudoconvex set-valued mapping
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部