This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini...This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline.展开更多
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de...In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms.展开更多
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extra...An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction,which are commonly faced by rolling bearings and lead to low diagnostic accuracy.Initially,dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty(1D-2DWDCGAN)are constructed to augment the original dataset.A self-adaptive loss threshold control training strategy is introduced,and establishing a self-adaptive balancing mechanism for stable model training.Subsequently,a diagnostic model based on multidimensional feature fusion is designed,wherein complex features from various dimensions are extracted,merging the original signal waveform features,structured features,and time-frequency features into a deep composite feature representation that encompasses multiple dimensions and scales;thus,efficient and accurate small sample fault diagnosis is facilitated.Finally,an experiment between the bearing fault dataset of CaseWestern ReserveUniversity and the fault simulation experimental platformdataset of this research group shows that this method effectively supplements the dataset and remarkably improves the diagnostic accuracy.The diagnostic accuracy after data augmentation reached 99.94%and 99.87%in two different experimental environments,respectively.In addition,robustness analysis is conducted on the diagnostic accuracy of the proposed method under different noise backgrounds,verifying its good generalization performance.展开更多
The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(...The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis.展开更多
Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose a...Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs.展开更多
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru...Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.展开更多
Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challe...Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challenge,we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty(CGAN-GP).This innovative method allows for nearly instantaneous prediction of optimized structures.Given a specific boundary condition,the network can produce a unique optimized structure in a one-to-one manner.The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization(SIMP)method.Subsequently,we design a conditional generative adversarial network and train it to generate optimized structures.To further enhance the quality of the optimized structures produced by CGAN-GP,we incorporate Pix2pixGAN.This augmentation results in sharper topologies,yielding structures with enhanced clarity,de-blurring,and edge smoothing.Our proposed method yields a significant reduction in computational time when compared to traditional topology optimization algorithms,all while maintaining an impressive accuracy rate of up to 85%,as demonstrated through numerical examples.展开更多
Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for tem...Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input.展开更多
Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retracti...Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Baozong Yuan(EiC of JSIP) The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
In this paper,a data-driven topology optimization(TO)method is proposed for the efficient design of three-dimensional heat transfer structures.The presented method is composed of four parts.Firstly,the three-dimension...In this paper,a data-driven topology optimization(TO)method is proposed for the efficient design of three-dimensional heat transfer structures.The presented method is composed of four parts.Firstly,the three-dimensional heat transfer topology optimization(HTTO)dataset,composed of both design parameters and the corresponding HTTO configuration,is established by the solid isotropic material with penalization(SIMP)method.Secondly,a high-performance surrogate model,named ResUNet-assisted generative adversarial nets(ResUNet-GAN),is developed by combining ReUNet and generative and adversarial nets(GAN).Thirdly,the same-resolution(SR)ResUNet-GAN is deployed to design three-dimensional heat transfer configurations by feeding design parameters.Finally,the finite element mesh of the optimized configuration is refined by the cross-resolution(CR)ResUNet-GAN to obtain near-optimal three-dimensional heat transfer configurations.Compared with conventional TO methods,the proposed method has two outstanding advantages:(1)the developed surrogate model establishes the end-to-end mapping from the design parameters to the three-dimensional configuration without any need for optimization iterations and finite element analysis;(2)both the SR ResUNet-GAN and the CR ResUNet-GAN can be employed individually or in combination to achieve each function,according to the needs of heat transfer structures.The data-driven method provides an efficient design framework for three-dimensional practical engineering problems.展开更多
This study addresses challenges in fetal magnetic resonance imaging (MRI) related to motion artifacts, maternal respiration, and hardware limitations. To enhance MRI quality, we employ deep learning techniques, specif...This study addresses challenges in fetal magnetic resonance imaging (MRI) related to motion artifacts, maternal respiration, and hardware limitations. To enhance MRI quality, we employ deep learning techniques, specifically utilizing Cycle GAN. Synthetic pairs of images, simulating artifacts in fetal MRI, are generated to train the model. Our primary contribution is the use of Cycle GAN for fetal MRI restoration, augmented by artificially corrupted data. We compare three approaches (supervised Cycle GAN, Pix2Pix, and Mobile Unet) for artifact removal. Experimental results demonstrate that the proposed supervised Cycle GAN effectively removes artifacts while preserving image details, as validated through Structural Similarity Index Measure (SSIM) and normalized Mean Absolute Error (MAE). The method proves comparable to alternatives but avoids the generation of spurious regions, which is crucial for medical accuracy.展开更多
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b...Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.展开更多
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle...This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend.展开更多
Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence i...Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures that the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss which has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than other models;we attribute this to the dataset’s low dimensionality as the most probable explanation.展开更多
Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/...Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously.展开更多
Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due...Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due to their small size,irregular shape,and the use of mixed-cropping techniques,the farm fields of smallholder can be difficult to delineate automatically.In recent years,numerous studies on field contour extraction using a deep Convolutional Neural Network(CNN)have been proposed.However,there is a relative shortage of labeled data for filed boundaries,thus affecting the training effect of CNN.Traditional methods mostly use image flipping,and random rotation for data augmentation.In this paper,we propose to apply Generative Adversarial Network(GAN)for the data augmentation of farm fields label to increase the diversity of samples.Specifically,we propose an automated method featured by Fully Convolutional Neural networks(FCN)in combination with GAN to improve the delineation accuracy of smallholder farms from Very High Resolution(VHR)images.We first investigate four State-Of-The-Art(SOTA)FCN architectures,i.e.,U-Net,PSPNet,SegNet and OCRNet,to find the optimal architecture in the contour detection task of smallholder farm fields.Second,we apply the identified optimal FCN architecture in combination with Contour GAN and pixel2pixel GAN to improve the accuracy of contour detection.We test our method on the study area in the Sudano-Sahelian savanna region of northern Nigeria.The best combination achieved F1 scores of 0.686 on Test Set 1(TS1),0.684 on Test Set 2(TS2),and 0.691 on Test Set 3(TS3).Results indicate that our architecture adapts to a variety of advanced networks and proves its effectiveness in this task.The conceptual,theoretical,and experimental knowledge from this study is expected to seed many GAN-based farm delineation methods in the future.展开更多
With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a s...With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna.In contrast from a direct imaging system,an AS telescope captures the Fourier coefficients of a spatial object,and then implement inverse Fourier transform to reconstruct the spatial image.Due to the limited number of antennas,the Fourier coefficients are extremely sparse in practice,resulting in a very blurry image.To remove/reduce blur,“CLEAN”deconvolution has been widely used in the literature.However,it was initially designed for a point source.For an extended source,like the Sun,its efficiency is unsatisfactory.In this study,a deep neural network,referring to Generative Adversarial Network(GAN),is proposed for solar image deconvolution.The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.The main purpose of this work is visual inspection instead of quantitative scientific computation.We believe that this will also help scientists to better understand solar phenomena with high quality images.展开更多
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp...Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.展开更多
基金supported by the Chinese Academy of Science"Light of West China"Program(2022-XBQNXZ-015)the National Natural Science Foundation of China(11903071)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China and administered by the Chinese Academy of Sciences。
文摘This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline.
基金This work was supported by the Shanxi Province Applied Basic Research Project,China(Grant No.201901D111100).Xiaoli Hao received the grant,and the URL of the sponsors’website is http://kjt.shanxi.gov.cn/.
文摘In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms.
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272259 and 52005148).
文摘An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction,which are commonly faced by rolling bearings and lead to low diagnostic accuracy.Initially,dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty(1D-2DWDCGAN)are constructed to augment the original dataset.A self-adaptive loss threshold control training strategy is introduced,and establishing a self-adaptive balancing mechanism for stable model training.Subsequently,a diagnostic model based on multidimensional feature fusion is designed,wherein complex features from various dimensions are extracted,merging the original signal waveform features,structured features,and time-frequency features into a deep composite feature representation that encompasses multiple dimensions and scales;thus,efficient and accurate small sample fault diagnosis is facilitated.Finally,an experiment between the bearing fault dataset of CaseWestern ReserveUniversity and the fault simulation experimental platformdataset of this research group shows that this method effectively supplements the dataset and remarkably improves the diagnostic accuracy.The diagnostic accuracy after data augmentation reached 99.94%and 99.87%in two different experimental environments,respectively.In addition,robustness analysis is conducted on the diagnostic accuracy of the proposed method under different noise backgrounds,verifying its good generalization performance.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(*MSIT)(No.2018R1A5A7059549).
文摘The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(NO.SML2021SP201)the National Natural Science Foundation of China(Grant No.42306200 and 42306216)+2 种基金the National Key Research and Development Program of China(Grant No.2023YFC3008100)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021004)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Project No.SL2021ZD203)。
文摘Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs.
基金the support from the National Key R&D Program of China underGrant(Grant No.2020YFA0711700)the National Natural Science Foundation of China(Grant Nos.52122801,11925206,51978609,U22A20254,and U23A20659)G.W.is supported by the National Natural Science Foundation of China(Nos.12002303,12192210 and 12192214).
文摘Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.
基金supported by the National Key Research and Development Projects (Grant Nos.2021YFB3300601,2021YFB3300603,2021YFB3300604)Fundamental Research Funds for the Central Universities (No.DUT22QN241).
文摘Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challenge,we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty(CGAN-GP).This innovative method allows for nearly instantaneous prediction of optimized structures.Given a specific boundary condition,the network can produce a unique optimized structure in a one-to-one manner.The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization(SIMP)method.Subsequently,we design a conditional generative adversarial network and train it to generate optimized structures.To further enhance the quality of the optimized structures produced by CGAN-GP,we incorporate Pix2pixGAN.This augmentation results in sharper topologies,yielding structures with enhanced clarity,de-blurring,and edge smoothing.Our proposed method yields a significant reduction in computational time when compared to traditional topology optimization algorithms,all while maintaining an impressive accuracy rate of up to 85%,as demonstrated through numerical examples.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.61977029).
文摘Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input.
文摘Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Baozong Yuan(EiC of JSIP) The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
基金supported by the National Natural Science Foundation of China(12472113,11872080)Natural Science Foundation of Beijing,China(3192005).
文摘In this paper,a data-driven topology optimization(TO)method is proposed for the efficient design of three-dimensional heat transfer structures.The presented method is composed of four parts.Firstly,the three-dimensional heat transfer topology optimization(HTTO)dataset,composed of both design parameters and the corresponding HTTO configuration,is established by the solid isotropic material with penalization(SIMP)method.Secondly,a high-performance surrogate model,named ResUNet-assisted generative adversarial nets(ResUNet-GAN),is developed by combining ReUNet and generative and adversarial nets(GAN).Thirdly,the same-resolution(SR)ResUNet-GAN is deployed to design three-dimensional heat transfer configurations by feeding design parameters.Finally,the finite element mesh of the optimized configuration is refined by the cross-resolution(CR)ResUNet-GAN to obtain near-optimal three-dimensional heat transfer configurations.Compared with conventional TO methods,the proposed method has two outstanding advantages:(1)the developed surrogate model establishes the end-to-end mapping from the design parameters to the three-dimensional configuration without any need for optimization iterations and finite element analysis;(2)both the SR ResUNet-GAN and the CR ResUNet-GAN can be employed individually or in combination to achieve each function,according to the needs of heat transfer structures.The data-driven method provides an efficient design framework for three-dimensional practical engineering problems.
文摘This study addresses challenges in fetal magnetic resonance imaging (MRI) related to motion artifacts, maternal respiration, and hardware limitations. To enhance MRI quality, we employ deep learning techniques, specifically utilizing Cycle GAN. Synthetic pairs of images, simulating artifacts in fetal MRI, are generated to train the model. Our primary contribution is the use of Cycle GAN for fetal MRI restoration, augmented by artificially corrupted data. We compare three approaches (supervised Cycle GAN, Pix2Pix, and Mobile Unet) for artifact removal. Experimental results demonstrate that the proposed supervised Cycle GAN effectively removes artifacts while preserving image details, as validated through Structural Similarity Index Measure (SSIM) and normalized Mean Absolute Error (MAE). The method proves comparable to alternatives but avoids the generation of spurious regions, which is crucial for medical accuracy.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61974075 and 61704121)+2 种基金the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).
文摘Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.
文摘This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend.
文摘Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures that the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss which has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than other models;we attribute this to the dataset’s low dimensionality as the most probable explanation.
基金supported by NFSC Funds(Grant Nos.41902071 and 42011530173)the Doctoral Research Start-up Fund,East China University of Technology(DHBK2019313)。
文摘Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously.
基金Foundation of Anhui Province Key Laboratory of Physical Geographic Environment(No.2022PGE012)
文摘Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due to their small size,irregular shape,and the use of mixed-cropping techniques,the farm fields of smallholder can be difficult to delineate automatically.In recent years,numerous studies on field contour extraction using a deep Convolutional Neural Network(CNN)have been proposed.However,there is a relative shortage of labeled data for filed boundaries,thus affecting the training effect of CNN.Traditional methods mostly use image flipping,and random rotation for data augmentation.In this paper,we propose to apply Generative Adversarial Network(GAN)for the data augmentation of farm fields label to increase the diversity of samples.Specifically,we propose an automated method featured by Fully Convolutional Neural networks(FCN)in combination with GAN to improve the delineation accuracy of smallholder farms from Very High Resolution(VHR)images.We first investigate four State-Of-The-Art(SOTA)FCN architectures,i.e.,U-Net,PSPNet,SegNet and OCRNet,to find the optimal architecture in the contour detection task of smallholder farm fields.Second,we apply the identified optimal FCN architecture in combination with Contour GAN and pixel2pixel GAN to improve the accuracy of contour detection.We test our method on the study area in the Sudano-Sahelian savanna region of northern Nigeria.The best combination achieved F1 scores of 0.686 on Test Set 1(TS1),0.684 on Test Set 2(TS2),and 0.691 on Test Set 3(TS3).Results indicate that our architecture adapts to a variety of advanced networks and proves its effectiveness in this task.The conceptual,theoretical,and experimental knowledge from this study is expected to seed many GAN-based farm delineation methods in the future.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.61572461,61811530282,61872429,11790301 and 11790305).
文摘With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna.In contrast from a direct imaging system,an AS telescope captures the Fourier coefficients of a spatial object,and then implement inverse Fourier transform to reconstruct the spatial image.Due to the limited number of antennas,the Fourier coefficients are extremely sparse in practice,resulting in a very blurry image.To remove/reduce blur,“CLEAN”deconvolution has been widely used in the literature.However,it was initially designed for a point source.For an extended source,like the Sun,its efficiency is unsatisfactory.In this study,a deep neural network,referring to Generative Adversarial Network(GAN),is proposed for solar image deconvolution.The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.The main purpose of this work is visual inspection instead of quantitative scientific computation.We believe that this will also help scientists to better understand solar phenomena with high quality images.
基金This work is supported by the National Natural Science Foundation of China(Nos.61771154,61603239,61772454,6171101570).
文摘Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.