This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Tradi...This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to adapt to complex and dynamic machining environments.To address this,we implement real-time tool condition recognition by introducing deep learning technology.Aiming to the insufficient recognition accuracy,we propose a pyramid pooling-based vision Transformer network(P2ViT-Net)method for tool condition recognition.Using images as input effectively mitigates the issue of low-dimensional signal features.We enhance the vision Transformer(ViT)framework for image classification by developing the P2ViT model and adapt it to tool condition recognition.Experimental results demonstrate that our improved P2ViT model achieves 94.4%recognition accuracy,showing a 10%improvement over conventional ViT and outperforming all comparative convolutional neural network models.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke...Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.展开更多
In order to recognize the different operating conditions of a distributed and complex electromechanical system in the process industry,this work proposed a novel method of condition recognition by combining complex ne...In order to recognize the different operating conditions of a distributed and complex electromechanical system in the process industry,this work proposed a novel method of condition recognition by combining complex network theory with phase space reconstruction.First,a condition-space with complete information was reconstructed based on phase space reconstruction,and each condition in the space was transformed into a node of a complex network.Second,the limited penetrable visibility graph method was applied to establish an undirected and un-weighted complex network for the reconstructed condition-space.Finally,the statistical properties of this network were calculated to recognize the different operating conditions.A case study of a real chemical plant was conducted to illustrate the analysis and application processes of the proposed method.The results showed that the method could effectively recognize the different conditions of electromechanical systems.A complex electromechanical system can be studied from the systematic and cyber perspectives,and the relationship between the network structure property and the system condition can also be analyzed by utilizing the proposed method.展开更多
Predicting NO_(x)in the sintering process of iron ore powder in advance was helpful to adjust the denitrification process in time.Taking NO_(x)in the sintering process of iron ore powder as the object,the boxplot,empi...Predicting NO_(x)in the sintering process of iron ore powder in advance was helpful to adjust the denitrification process in time.Taking NO_(x)in the sintering process of iron ore powder as the object,the boxplot,empirical mode decomposition algorithm,Pearson correlation coefficient,maximum information coefficient and other methods were used to preprocess the sintering data and naive Bayes classification algorithm was used to identify the sintering conditions.The regression prediction model with high accuracy and good stability was selected as the sub-model for different sintering conditions,and the sub-models were combined into an integrated prediction model.Based on actual operational data,the approach proved the superiority and effectiveness of the developed model in predicting NO_(x),yielding an accuracy of 96.17%and an absolute error of 5.56,and thereby providing valuable foresight for on-site sintering operations.展开更多
Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous...Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.展开更多
基金supported by China Postdoctoral Science Foundation(No.2024M754122)the Postdoctoral Fellowship Programof CPSF(No.GZB20240972)+3 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2024ZB194)Natural Science Foundation of Jiangsu Province(No.BK20241389)Basic Science ResearchFund of China(No.JCKY2023203C026)2024 Jiangsu Province Talent Programme Qinglan Project.
文摘This study focuses on tool condition recognition through data-driven approaches to enhance the intelligence level of computerized numerical control(CNC)machining processes and improve tool utilization efficiency.Traditional tool monitoring methods that rely on empirical knowledge or limited mathematical models struggle to adapt to complex and dynamic machining environments.To address this,we implement real-time tool condition recognition by introducing deep learning technology.Aiming to the insufficient recognition accuracy,we propose a pyramid pooling-based vision Transformer network(P2ViT-Net)method for tool condition recognition.Using images as input effectively mitigates the issue of low-dimensional signal features.We enhance the vision Transformer(ViT)framework for image classification by developing the P2ViT model and adapt it to tool condition recognition.Experimental results demonstrate that our improved P2ViT model achieves 94.4%recognition accuracy,showing a 10%improvement over conventional ViT and outperforming all comparative convolutional neural network models.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported by National Natural Science Foundation under Grant No.50875247Shanxi Province Natural Science Foundation under Grant No.2009011026-1
文摘Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.
基金supported by the National Natural Science Foundation of China (Grant by No. 51175402)
文摘In order to recognize the different operating conditions of a distributed and complex electromechanical system in the process industry,this work proposed a novel method of condition recognition by combining complex network theory with phase space reconstruction.First,a condition-space with complete information was reconstructed based on phase space reconstruction,and each condition in the space was transformed into a node of a complex network.Second,the limited penetrable visibility graph method was applied to establish an undirected and un-weighted complex network for the reconstructed condition-space.Finally,the statistical properties of this network were calculated to recognize the different operating conditions.A case study of a real chemical plant was conducted to illustrate the analysis and application processes of the proposed method.The results showed that the method could effectively recognize the different conditions of electromechanical systems.A complex electromechanical system can be studied from the systematic and cyber perspectives,and the relationship between the network structure property and the system condition can also be analyzed by utilizing the proposed method.
基金financially supported by the Natural Science Basic foundation of China(Program No.52174325)the Key Research and Development Program of Shaanxi(Grant No.2020GY-166 and Program No.2020GY-247)the Shaanxi Provincial Innovation Capacity Support Plan(Grant No.2023-CX-TD-53).
文摘Predicting NO_(x)in the sintering process of iron ore powder in advance was helpful to adjust the denitrification process in time.Taking NO_(x)in the sintering process of iron ore powder as the object,the boxplot,empirical mode decomposition algorithm,Pearson correlation coefficient,maximum information coefficient and other methods were used to preprocess the sintering data and naive Bayes classification algorithm was used to identify the sintering conditions.The regression prediction model with high accuracy and good stability was selected as the sub-model for different sintering conditions,and the sub-models were combined into an integrated prediction model.Based on actual operational data,the approach proved the superiority and effectiveness of the developed model in predicting NO_(x),yielding an accuracy of 96.17%and an absolute error of 5.56,and thereby providing valuable foresight for on-site sintering operations.
文摘Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.