期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
AN INTELLIGENT TOOL CONDITION MONITORING SYSTEM USING FUZZY NEURAL NETWORKS 被引量:3
1
作者 赵东标 KeshengWang OliverKrimmel 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期169-175,共7页
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia... Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities. 展开更多
关键词 tool condition monitoring neural networks fuzzy logic acoustic emission force sensor fuzzy neural networks
在线阅读 下载PDF
Decentralized and overall condition monitoring system for large-scale mobile and complex equipment
2
作者 Cao Jianjun Zhang Peilin +1 位作者 Ren Guoquan Fu Jianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期758-763,共6页
It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quit... It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example, the design and realization of the decentralized and overall condition monitoring system is introduced specifically. Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested. 展开更多
关键词 condition monitoring fault diagnosis micro control unit information fusion
在线阅读 下载PDF
Working Condition Real-Time Monitoring Model of Lithium Ion Batteries Based on Distributed Parameter System and Single Particle Model 被引量:1
3
作者 黄亮 姚畅 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期623-628,I0002,共7页
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ... Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM. 展开更多
关键词 Lithium ion battery Distributed parameter system Single particle model condition monitoring
在线阅读 下载PDF
A portable wind turbine condition monitoring system and its field applications
4
作者 Jingbo Zhao Wenxing Deng +4 位作者 Zonglin Yin Haibo Zheng Ting Hu Weilin Yu Huageng Luo 《Clean Energy》 EI 2018年第1期58-71,共14页
This article introduces a portable wind turbine condition monitoring system(CMS)and its applications in wind turbine drivetrain damage detection.The portable CMS based on vibration detection and analysis has a long ap... This article introduces a portable wind turbine condition monitoring system(CMS)and its applications in wind turbine drivetrain damage detection.The portable CMS based on vibration detection and analysis has a long application history in conventional rotating machineries,but it is not widely used in wind turbines.There are several reasons why it is not used,including the labor-and knowledge-intensive requirements for test setup and result interpretation.There are also reasons specific to wind turbines,such as the structural diversity of drivetrains,the uncertainty of operational conditions,and the complexity of the damage mechanism of different parts that make the conventional vibration-based CMS inefficient and not cost-effective.All these factors affect the wide application of the portable system.The portable wind turbine CMS discussed in this article is integrated using advanced vibration measurement and analysis methodology.Fault detection for the acquired acceleration response and high-speed shaft speed signal is carried out by a suite of data analysis techniques specifically designed for a wind turbine gearbox.Using these techniques,damage detection accuracy for all the components inside a gearbox is improved significantly,especially for those related to medium-and low-speed shafts.The new data processing techniques also are briefly described with the developed methodologies verified by three wind turbines with typical low-speed shaft-related component damages.These damage assessments include the low-and medium-speed planetary stage ring gear,the low-speed planetary stage planet gear and damage to the main bearing. 展开更多
关键词 wind power generation drivetrain portable detector vibration analysis fault detection condition monitoring system(CMS) wind field test case
原文传递
A system for underground road condition monitoring 被引量:2
5
作者 Max Astrand Erik Jakobsson +1 位作者 Martin Lindfors John Svensson 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期405-411,共7页
Poor road conditions in underground mine tunnels can lead to decreased production efficiency and increased wear on production vehicles. A prototype system for road condition monitoring is presented in this paper to co... Poor road conditions in underground mine tunnels can lead to decreased production efficiency and increased wear on production vehicles. A prototype system for road condition monitoring is presented in this paper to counteract this. The system consists of three components i.e. localization, road monitoring, and scheduling. The localization of vehicles is performed using a Rao-Blackwellized extended particle filter, combining vehicle mounted sensors with signal strengths of Wi Fi access points. Two methods for road monitoring are described: a Kalman filter used together with a model of the vehicle suspension system, and a relative condition measure based on the power spectral density. Lastly, a method for taking automatic action on an ill-conditioned road segment is proposed in the form of a rescheduling algorithm.The scheduling algorithm is based on the large neighborhood search and is used to integrate road service activities in the short-term production schedule while minimizing introduced production disturbances.The system is demonstrated on experimental data collected in a Swedish underground mine. 展开更多
关键词 LOCALIZATION Road condition monitoring SCHEDULING Underground mining
在线阅读 下载PDF
The integrated monitoring system for running parameters of key mining equipment based on condition monitoring technology 被引量:1
6
作者 BIN Guang-fu LI Xue-jun +2 位作者 BALBIR S Dhillon HUANG Zhen-yu GUO Deng-ta 《Journal of Coal Science & Engineering(China)》 2010年第1期108-112,共5页
An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client co... An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment. 展开更多
关键词 mining key equipment running parameters condition monitoring signal acquisition and processing integrated monitoring
在线阅读 下载PDF
Analysis of Tool Wear Condition Monitoring Based on Digital Twin Technology
7
作者 Chengcheng Zhang 《Journal of Electronic Research and Application》 2025年第4期71-77,共7页
This paper focuses on the key issues of tool wear condition monitoring in the field of machining,and deeply discusses the application of digital twin technology in this aspect.This paper expounds the principle and arc... This paper focuses on the key issues of tool wear condition monitoring in the field of machining,and deeply discusses the application of digital twin technology in this aspect.This paper expounds the principle and architecture of digital twin technology,analyzes its specific methods in tool wear data acquisition,modeling,simulation,and real-time monitoring,and shows the significant advantages of this technology in improving the accuracy of tool wear monitoring and realizing predictive maintenance.At the same time,the challenges faced by digital twin technology in tool wear condition monitoring are discussed,and the corresponding development direction is put forward,aiming to provide theoretical reference and practical guidance for optimizing tool management by digital twin technology in the machining industry. 展开更多
关键词 Digital twin technology Tool wear condition monitoring MACHINING Predictive maintenance
在线阅读 下载PDF
Data-Driven Approach for Condition Monitoring and Improving Power Output of Photovoltaic Systems
8
作者 Nebras M.Sobahi Ahteshamul Haque +2 位作者 V S Bharath Kurukuru Md.Mottahir Alam Asif Irshad Khan 《Computers, Materials & Continua》 SCIE EI 2023年第3期5757-5776,共20页
Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic(PV)systems.In light of this requirement,this paper provides a path for evaluatin... Increasing renewable energy targets globally has raised the requirement for the efficient and profitable operation of solar photovoltaic(PV)systems.In light of this requirement,this paper provides a path for evaluating the operating condition and improving the power output of the PV system in a grid integrated environment.To achieve this,different types of faults in grid-connected PV systems(GCPVs)and their impact on the energy loss associated with the electrical network are analyzed.A data-driven approach using neural networks(NNs)is proposed to achieve root cause analysis and localize the fault to the component level in the system.The localized fault condition is combined with a parallel operation of adaptive neurofuzzy inference units(ANFIUs)to develop a power mismatch-based control unit(PMCU)for improving the power output of the GCPV.To develop the proposed framework,a 10-kW single-phase GCPV is simulated for training the NN-based anomaly detection approach with 14 deviation signals.Further,the developed algorithm is combined with the PMCU implemented with the experimental setup of GCPV.The results identified 98.2%training accuracy and 43000 observations/sec prediction speed for the trained classifier,and improved power output with reduced voltage and current harmonics for the grid-connected PV operation. 展开更多
关键词 condition monitoring anomaly detection performance evaluation fault classification OPTIMIZATION
在线阅读 下载PDF
A Web-based Condition Monitoring and Diagnostic System of Rolling Mill
9
作者 XIONG Liang cai, HE Lin song, SHI Tie lin, YANG Shu zi Huazhong University of Science and Technology, Wuhan 430074, P.R.China 《International Journal of Plant Engineering and Management》 2002年第1期21-25,共5页
A web based condition monitoring and fault diagnosis system (CMAFDS) for the F2 finishing mill of the 2050 Hot Strip Mill was developed at a steel works. The features of the condition monitoring and fault diagnosis s... A web based condition monitoring and fault diagnosis system (CMAFDS) for the F2 finishing mill of the 2050 Hot Strip Mill was developed at a steel works. The features of the condition monitoring and fault diagnosis system based on the Web are analyzed in this paper. This paper also describes the main frame of the hardware and the software in the system and emphatically points out the function of the database management system(DBMS) based on the Web. It is proved that the web based CMAFDS is practical in technology and much superior to the CMAFDS based on other network technology in functions. 展开更多
关键词 condition monitoring fault diagnosis WEB rolling mill database.
在线阅读 下载PDF
Research on Key Techniques of Condition Monitoring and Fault Diagnosing Systems of Machine Groups
10
作者 WANGYan-kai LIAOMing-fu WANGSi-ji 《International Journal of Plant Engineering and Management》 2005年第2期65-69,共5页
This paper describes the development of the condition monitoring and faultdiagnosing system of a group of rotating machinery. The data management is performed by means ofdouble redundant data bases stored simultaneous... This paper describes the development of the condition monitoring and faultdiagnosing system of a group of rotating machinery. The data management is performed by means ofdouble redundant data bases stored simultaneously in both the analyzing server and monitoringclient. In this way, high reliability of the storage of data is guaranteed. Condensation of trenddata releases much space resource of the hard disk. Diagnosing strategies orientated to differenttypical faults of rotating machinery are developed and incorporated into the system. Experimentalverification shows that the system is suitable and effective for condition monitoring and faultdiagnosing for a rotating machine group. 展开更多
关键词 machine group condition monitoring fault diagnosis analyzing server monitoring client
在线阅读 下载PDF
An Embedded Condition Monitoring and Fault Diagnosis System for Rotary Machines
11
作者 LIU Hai-rong XU Fei-yun 《International Journal of Plant Engineering and Management》 2006年第4期193-204,共12页
An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet orient... An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet oriented embedded intelligent condition monitoring and fault diagnosis system for the rotating machine with remote monitoring, diagnosis, maintenance and upgrading functions is introduced systematically. Based on the DSP ( Digital Signal Processor) and embedded microcomputer, the system can measure and store the machine work status in real time, such as the rotating speed and vibration, etc. In the system, the DSP chip is used to do the fault signal processing and feature extraction, and the embedded microcomputer with a customized Linux operation system is used to realize the internet oriented remote software upgrading and system maintenance. Embedded fault diagnosis software based on mobile agent technology is also designed in the system, which can interconnect with the remote fault diagnosis center to realize the collaborative diagnosis. The embedded condition monitoring and fault diagnosis technology proposed in this paper will effectively improve the intelligence degree of the fault diagnosis system. 展开更多
关键词 embedded system mobile agent condition monitoring fault diagnosis
在线阅读 下载PDF
Condition Monitoring of CNC Machining Using Adaptive Control 被引量:5
12
作者 B. Srinivasa Prasad D. Siva Prasad +1 位作者 A. Sandeep G. Veeraiah 《International Journal of Automation and computing》 EI CSCD 2013年第3期202-209,共8页
In this work, an adaptive control constraint system has been developed for computer numerical control (CNC) turning based on the feedback control and adaptive control/self-tuning control. In an adaptive controlled s... In this work, an adaptive control constraint system has been developed for computer numerical control (CNC) turning based on the feedback control and adaptive control/self-tuning control. In an adaptive controlled system, the signals from the online measurement have to be processed and fed back to the machine tool controller to adjust the cutting parameters so that the machining can be stopped once a certain threshold is crossed. The main focus of the present work is to develop a reliable adaptive control system, and the objective of the control system is to control the cutting parameters and maintain the displacement and tool flank wear under constraint valves for a particular workpiece and tool combination as per ISO standard. Using Matlab Simulink, the digital adaption of the cutting parameters for experiment has confirmed the efficiency of the adaptively controlled condition monitoring system, which is reflected in different machining processes at varying machining conditions. This work describes the state of the art of the adaptive control constraint (ACC) machining systems for turning. AIS14140 steel of 150 BHN hardness is used as the workpiece material, and carbide inserts are used as cutting tool material throughout the experiment. With the developed approach, it is possible to predict the tool condition pretty accurately, if the feed and surface roughness are measured at identical conditions. As part of the present research work, the relationship between displacement due to vibration, cutting force, flank wear, and surface roughness has been examined. 展开更多
关键词 Adaptive control condition monitoring model based control system and flank wear surface roughness displacement.
原文传递
Sparsity-Assisted Intelligent Condition Monitoring Method for Aero-engine Main Shaft Bearing 被引量:4
13
作者 DING Baoqing WU Jingyao +3 位作者 SUN Chuang WANG Shibin CHEN Xuefeng LI Yinghong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期508-516,共9页
Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted ... Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings. 展开更多
关键词 aero-engine main shaft bearing intelligent condition monitoring feature extraction sparse model variational autoencoders deep learning
在线阅读 下载PDF
Model-based and Fuzzy Logic Approaches to Condition Monitoring of Operational Wind Turbines 被引量:3
14
作者 Philip Cross Xiandong Ma 《International Journal of Automation and computing》 EI CSCD 2015年第1期25-34,共10页
It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine inspection and maintenance. Further, wind turbines in these locations are often subject to har... It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine inspection and maintenance. Further, wind turbines in these locations are often subject to harsh operating conditions. These challenges mean there is a requirement for a high degree of maintenance. The data generated by monitoring systems can be used to obtain models of wind turbines operating under different conditions, and hence predict output signals based on known inputs. A model-based condition monitoring system can be implemented by comparing output data obtained from operational turbines with those predicted by the models, so as to detect changes that could be due to the presence of faults. This paper discusses several techniques for model-based condition monitoring systems: linear models, artificial neural networks, and state dependent parameter "pseudo" transfer functions.The models are identified using supervisory control and data acquisition(SCADA) data acquired from an operational wind firm. It is found that the multiple-input single-output state dependent parameter method outperforms both multivariate linear and artificial neural network-based approaches. Subsequently, state dependent parameter models are used to develop adaptive thresholds for critical output signals. In order to provide an early warning of a developing fault, it is necessary to interpret the amount by which the threshold is exceeded, together with the period of time over which this occurs. In this regard, a fuzzy logic-based inference system is proposed and demonstrated to be practically feasible. 展开更多
关键词 condition monitoring wind turbines artificial neural network state dependent parameter model fuzzy logic
原文传递
Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms 被引量:3
15
作者 Gopi Krishna Durbhaka Barani Selvaraj +3 位作者 Mamta Mittal Tanzila Saba Amjad Rehman Lalit Mohan Goyal 《Computers, Materials & Continua》 SCIE EI 2021年第2期2041-2059,共19页
Nowadays,renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs.Most of the renewable energy sources involve turbines and their operation and maint... Nowadays,renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs.Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task.Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches,practices and technology during the last decade.Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect.This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory(LSTM)model in classifying the faults from the vibration signals data acquired from the gearbox.This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision.The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods. 展开更多
关键词 GEARBOX long short term memory fault classification swarm intelligence OPTIMIZATION condition monitoring
在线阅读 下载PDF
Drilling signals analysis for tricone bit condition monitoring 被引量:2
16
作者 Hamed Rafezi Ferri Hassani 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期187-195,共9页
This paper presents a novel approach to investigate the relations between drilling signals and bit wear condition in real world full-scale mining operations.This research addresses the increasing demand for automation... This paper presents a novel approach to investigate the relations between drilling signals and bit wear condition in real world full-scale mining operations.This research addresses the increasing demand for automation in mining to increase the efficiency,safety,and ability to work in harsh environments.A crucial issue in fully autonomous unmanned drilling is to have a system to detect the bit wear condition through the drilling signals analysis in real time.In this work,based on extensive field studies,a novel qualitative method for tricone bit wear state classification is developed and introduced.The relations between drilling vibration as well as electric motor current signals and bit wear are investigated and bit failure vibration frequencies,regardless of the geological conditions,are introduced.Bit failure frequencies are experimentally investigated and analytically calculated.Finally,the effect of bit design parameters on the failure frequencies is presented for the application of bit wear condition monitoring and bit failure prediction. 展开更多
关键词 DRILLING Tricone bit VIBRATION WEAR condition monitoring Failure prediction
在线阅读 下载PDF
Turbopump Condition Monitoring Using Incremental Clustering and One-class Support Vector Machine 被引量:2
17
作者 HU Lei HU Niaoqing +1 位作者 QIN Guojun GU Fengshou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期474-479,共6页
Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.T... Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump. 展开更多
关键词 novelty detection condition monitoring incremental clustering one-class support vector machine TURBOPUMP
在线阅读 下载PDF
A graphic monitoring method for electric power of VVVF hydraulic system 被引量:2
18
作者 SHI Yu-ping GU Li-chen +1 位作者 ZHAO Song LIU Chang-chang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第4期307-315,共9页
In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric p... In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric parameters.This paper first analyzes how the voltage and current of the motor stator change with the operation conditions of VVVF hydraulic system.As a result,we draw the relationship between the electric parameters(voltage and current)and power frequency.Then,the signals of the voltage and current are fused as dynamic figures based on the idea of Lissajous figures,and the values of the electric parameters are related to the features of the dynamic figures.Rigorous theoretical analysis establishes the function between the electric power of the variable frequency motor(VFM)and the features of the plotted dynamic figures including area of diagram,area of bounding rectangle,tilt angle,etc.Finally,the effectiveness of the proposed method is verified by two cases,in which the speed of VFM and the load of VVVF hydraulic system are changed.The results show that the increase of the speed of VFM enhances its three-phase electric power,but reduces the tilt angle of the plotted dynamic figures.In addition,as the load of VVVF hydraulic system is increased,the three-phase electric power of VFM and the tilt angle of the plotted dynamic figures are both increased.This paper provides a new way to online monitor the running state of VVVF hydraulic system. 展开更多
关键词 variable frequency motor (VFM) hydraulic system condition monitoring Lissajous figures electric power information fusion
在线阅读 下载PDF
Online Condition Monitoring of Gripper Cylinder in TBM Based on EMD Method 被引量:2
19
作者 Lin Li Jian-Feng Tao +2 位作者 Hai-Dong Yu Yi-Xiang Huang Cheng-Liang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1325-1337,共13页
The gripper cylinder that provides braced force for Tunnel Boring Machine (TBM) might fail due to severe vibration when the TBM excavates in the tunnel. Early fault diagnosis of the gripper cylinder is important for... The gripper cylinder that provides braced force for Tunnel Boring Machine (TBM) might fail due to severe vibration when the TBM excavates in the tunnel. Early fault diagnosis of the gripper cylinder is important for the safety and efficiency of the whole tunneling project. In this paper, an online condition monitoring system based on the Empirical Mode Decomposition (EMD) method is estab- lished for fault diagnosis of the gripper cylinder while TBM is working. Firstly, the lumped mass parameter model of the gripper cylinder is established considering the influence of the variable stiffness at the rock interface, the equivalent stiffness of the oil, the seals, and the copper guide sleeve. The dynamic performance of the gripper cylinder is investigated to provide basis for its health condition evaluation. Then, the EMD method is applied to identify the characteristic frequencies of the gripper cylinder for fault diagnosis and a field test is used to verify the accuracy of the EMD method for detection of the characteristic frequencies. Furthermore, the contact stiff- ness at the interface between the barrel and the rod is calculated with Hertz theory and the relationship between the natural frequency and the stiffness varying with the health condition of the cylinder is simulated based on the dynamic model. The simulation shows that the character- istic frequencies decrease with the increasing clearance between the barrel and the rod, thus the defects could be indicated by monitoring the natural frequency. Finally, a health condition management system of the gripper cylin- der based on the vibration signal and the EMD method is established, which could ensure the safety of TBM. 展开更多
关键词 Fault diagnosis - Empirical modedecomposition (EMD) condition monitoring - Grippercylinder TBM
在线阅读 下载PDF
Bio-inspired computational techniques based on advanced condition monitoring 被引量:3
20
作者 Su Liangcheng He Shan +1 位作者 Li Xiaoli Li Xinglin 《Engineering Sciences》 EI 2011年第1期90-96,共7页
The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of t... The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system. 展开更多
关键词 condition monitoring computational intelligence neural networks evolutionary computation fuzzy logic
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部