The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron co...The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
BACKGROUND Orthobiologics-biological substances like platelet-rich plasma(PRP),bone marrow aspirate concentrate,and stem cells-are increasingly used in musculoskeletal care to promote tissue repair and reduce reliance...BACKGROUND Orthobiologics-biological substances like platelet-rich plasma(PRP),bone marrow aspirate concentrate,and stem cells-are increasingly used in musculoskeletal care to promote tissue repair and reduce reliance on invasive surgery.Despite global momentum,India's clinical adoption remains underexplored.AIM To inform education,policy,and resource allocation for the safe and effective adoption of orthobiologics in musculoskeletal care.METHODS A cross-sectional electronic survey was conducted from January to March 2025 among orthopaedic surgeons,academicians,and trainees across India.The questionnaire assessed demographics,knowledge of orthobiologics,attitudes toward training and subspecialization,usage trends,regulatory awareness,and perceived barriers.Data were analyzed using descriptive statistics andχ2/Fisher’s exact tests,with P<0.05 considered significant.RESULTS A total of 1280 valid responses were collected.Awareness of orthobiologics was high(97%),with PRP being the most familiar and widely used(80%).Formal training was reported by only 31%,though 85%showed interest in structured education,and 68%supported orthobiologics as a subspecialty.Satisfaction with clinical outcomes averaged 6.5±2.3 out of 10 points.Barriers included high treatment cost(64%),poor patient awareness(90%),and limited access to biologics labs(18%).Regulatory understanding was moderate,with academic-affiliated clinicians more informed about stem cell guidelines.CONCLUSION Indian orthopaedic professionals demonstrate strong awareness and optimism toward orthobiologics,but widespread gaps in training,infrastructure,and regulation hinder broader adoption.Strategic investments in education,standardized protocols,and accessible facilities are essential to support safe and evidence-driven integration of regenerative therapies into clinical practice.展开更多
Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly diffic...Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.展开更多
Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light condi...Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.展开更多
InP quantum dots(QDs)have been a major building block of modern display technology due to their high photoluminescence quantum yield(PLQY)in the visible spectrum,superior stability,and eco-friendly composition.However...InP quantum dots(QDs)have been a major building block of modern display technology due to their high photoluminescence quantum yield(PLQY)in the visible spectrum,superior stability,and eco-friendly composition.However,their applications at short-wave infrared(SWIR)have been hindered by their low efficiency.Here,we report the synthesis of efficient and SWIR-emitting InP QDs by precisely controlling the InP core nucleation using a low-cost ammonia phosphorus precursor,while avoiding size-limiting ZnCl_(2) for effective copper doping.Subsequent epitaxial growth of a lattice-matched ZnSe/ZnS multishell enhanced the QD sphericity and surface smoothness and yielded a record PLQY of 66% with an emission peak at 960 nm.When QDs were integrated as the high-refractive-index luminescent core of a liquid waveguide-based luminescent solar concentrator(LSC),the device achieved an optical efficiency of 7.36%.This performance arises from their high PLQY,spectral alignment with the responsivity peak of silicon solar cells,and the optimized core/cladding waveguide structure.These results highlight the potential of InP QDs as a promising nanomaterial for SWIR emission and applications.展开更多
Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N...Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N response makes it difficult to predict and quantify the effect of water deficit on crop N status.The nitrogen nutrition index(NNI)has been widely used to accurately diagnose crop N status and to evaluate the effectiveness of N application.The decline of NNI under water-limiting conditions has been documented,although the underlying mechanism governing this decline is not fully understood.This study aimed to elucidate the reason for the decline of NNI under waterlimiting conditions and to provide insights into the accurate utilization of NNI for assessing crop N status under different water-N interaction treatments.Rainout shelter experiments were conducted over three growing seasons from 2018 to 2021 under different N(75 and 225 kg N ha^(-1),low N and high N)and water(120 to 510 mm,W0 to W3)co-limitation treatments.Plant N accumulation,shoot biomass(SB),plant N concentration(%N),soil nitrate-N content,actual evapotranspiration(ET_a),and yield were recorded at the stem elongation,booting,anthesis and grain filling stages.Compared to W0,W1 to W3 treatments exhibited NNI values that were greater by 10.2 to 20.5%,12.6to 24.8%,14 to 24.8%,and 16.8 to 24.8%at stem elongation,booting,anthesis,and grain filling,respectively,across the 2018-2021 seasons.This decline in NNI under water-limiting conditions stemmed from two main factors.First,reduced ET_(a) and SB led to a greater critical N concentration(%N_(c))under water-limiting conditions,which contributed to the decline in NNI primarily under high N conditions.Second,changes in plant%N played a more significant role under low N conditions.Plant N accumulation exhibited a positive allometric relationship with SB and a negative relationship with soil nitrate-N content under water-limiting conditions,indicating co-regulation by SB and the soil nitrate-N content.However,this regulation was influenced by water availability.Plant N accumulation sourced from the soil nitrate-N content reflects soil N availability.Greater soil water availability facilitated greater absorption of soil nitrate-N into the plants,leading to a positive correlation between plant N accumulation and ET_(a)across the different water-N interaction treatments.Therefore,considering the impact of soil water availability is crucial when assessing soil N availability under water-limiting conditions.The findings of this study provide valuable insights into the factors contributing to the decline in NNI among different water-N interaction treatments and can contribute to the more accurate utilization of NNI for assessing winter wheat N status.展开更多
The multipath application of green resources needs to be realised under the carbon neutrality goal.Worldwide,biomass is a resource in urgent need of treatment.In this paper,corn stover biomass(YM)or biochar with diffe...The multipath application of green resources needs to be realised under the carbon neutrality goal.Worldwide,biomass is a resource in urgent need of treatment.In this paper,corn stover biomass(YM)or biochar with different particle sizes(YMF or YMX)was added during the preparation of coal-water slurry to investigate its effect on the performance of coal-water slurry and the micro-mechanism.The results showed that the fixed viscosity concentration of coal-water slurry(CYWS)with YM was only 47.42%,and the flowability was 49.9 mm,which made the slurry performance poor.The fixed viscosity concentration of coal-water slurry(CFWS)blended with YMF and coal-water slurry(CXWS)blended with YMX increased by 10.41%and 14.24%,respectively,compared with CYWS.Meanwhile,CXWS had the lowest thixotropy and yield stress,with a yield stress of only 16.13 Pa,which was 77.31 Pa lower than that of CYWS.This indicates that YMX treated by charring and milling is more favorable to be blended with coal to prepare coal-water slurry.This is due to the enhanced hydrophilicity and electronegativity of YMX.The enhanced hydrophilicity reduces the tendency to form three-dimensional networks in coal-water slurry,while the enhanced electronegativity improves the electrostatic repulsion between particles,which is beneficial to the dispersion of particles.In the subsequent EDLVO analyses,the same idea was proved.展开更多
Flotation is the most common method to recover valuable minerals by selective adsorption of collectors on target mineral surfaces.However,in subsequent hydrometallurgy of mineral flotation concentrates,the adsorbed co...Flotation is the most common method to recover valuable minerals by selective adsorption of collectors on target mineral surfaces.However,in subsequent hydrometallurgy of mineral flotation concentrates,the adsorbed collectors must be desorbed since it can adversely affect the efficiency of metallurgical process and produce wastewater.ZL,as a fatty acid mixture,is a typical industrially used collector for scheelite flotation in China.Sodium oleate(NaOL)has similar fatty acid group as ZL.In this study,the desorption behavior of NaOL/ZL from scheelite surface by a physical method of stirring at a low temperature was investigated.NaOL desorption tests of single mineral showed that a desorption rate of 77.75% for NaOL from scheelite surface into pulp was achieved in a stirring speed of2500 r/min at 5℃in a neutral environment.Under the above desorption condition,in the pulp containing desorbed collector by adding extra 30% normal NaOL dosage,the scheelite recovery reached about 95% in the single mineral flotation test.Desorption and reuse of ZL collector for the flotation of real scheelite ore showed only a 75%normal dosage of ZL could produce a qualified rough concentrate.The atomic force microscope(AFM)tests showed that after desorption treatment of low temperature and strong stirring,the dense strip-like structure of NaOL on the scheelite surface was destroyed to be speck-like.Molecular dynamics simulations(MDS)demonstrated that the adsorption energy between NaOL and scheelite surface was more negative at 25℃(-13.39 kcal/mol)than at 5℃(-11.50 kcal/mol)in a neutral pH,indicating that a low temperature was beneficial for the desorption of collector from mineral surface.Due to its simplicity and economy,the method we proposed of desorption of collector from mineral surface and its reuse for flotation has a great potential for industrial application.展开更多
Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake...Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake Baikal,and the Angara River,the only runoff reflecting all this aquatic diversity.River waters in the Baikal region are known to be deficient in some vital elements,including fluorine.This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem.Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method.The study represents the monitoring that was carried out between 1997 and 2022 years.We determine likely causes of high and low fluorine concentrations in the water from different components,propose and substantiate the fluorine sources,geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.展开更多
To completely recover valuable elements and reduce the amount of waste,the impact of phosphoric acid on the decomposition of rare earth,fluorine and phosphorus during cyclic leaching was studied based on the character...To completely recover valuable elements and reduce the amount of waste,the impact of phosphoric acid on the decomposition of rare earth,fluorine and phosphorus during cyclic leaching was studied based on the characteristics of low-tempe rature sulfuric acid deco mposition.When a single monazite was leached using 75 wt% H_(2)SO_(4) solution with phosphoric acid,the size and number of monazite particles in the washing slag gradually decrease with the increase in phosphoric acid content in the leaching solution.The monazite phase can hardly be found in the slag when the phosphoric acid content reaches 70 g/L,which indicates that phosphoric acid is favorable for monazite decomposition.The mixed rare earth concentrate was leached by 75 wt% H_(2)SO_(4) containing 70 g/L phosphoric acid,the mineral compositions of the washing slag are only gypsum and unwashed rare earth sulfuric acid.After cyclic leaching of75 wt% H_(2)SO_(4),the mineral compositions of the primary leaching washing slag are mainly undecomposed monazite,rare earth sulfate and calcium sulfate.However,monazite is not found in the mineral phase of the second and third leaching washing slag.The leaching rates of rare earth and phosphorus gradually increase with the increase in cyclic leaching times.In addition,the phosphoric acid content in the leaching solution increases with the increase in the number of cyclic leaching time.However,the rising trend decreases when the phosphoric acid content reaches 50 g/L by adsorption and crystallization of phosphoric acid.A small amount of water can be used to clean the leaching residue before washing to recover the more soluble phosphorus acid according to the difference of dissolution between phosphoric acid and rare earth sulfuric acid.展开更多
Objective To assess health equity in the Yangtze River region to improve understanding of the correlation between hand, foot, and mouth disease(HFMD) and socioeconomic factors.Methods From 2014–2016, data on HFMD inc...Objective To assess health equity in the Yangtze River region to improve understanding of the correlation between hand, foot, and mouth disease(HFMD) and socioeconomic factors.Methods From 2014–2016, data on HFMD incidence, population statistics, economic indicators, and meteorology from 26 cities along the Yangtze River were analyzed. A multi-city random-effects metaanalysis was performed to study the relationship between temperature and HFMD transmission, and health equity was assessed with respect to socio-economic impact.Results Over the study period, 919,458 HFMD cases were reported, with Shanghai(162,303) having the highest incidence and Tongling(5,513) having the lowest. Males were more commonly affected(male-to-female ratio, 1.49:1). The exposure-response relationship had an M-shaped curve, with two HFMD peaks occurring at 4 ℃ and 26 ℃. The relative risk had two peaks at 1.30 ℃(1.834, 95% CI:1.204–2.794) and 31.4 ℃(1.143, 95% CI: 0.901–1.451), forming an M shape, with the first peak higher than the second. The most significant impact of temperature on HFMD was observed between –2 ℃ and18.1 ℃. The concentration index(0.2463) indicated moderate concentration differences, whereas the Theil index(0.0418) showed low inequality in distribution.Conclusion The incidence of HFMD varied across cities, particularly with changes in temperature.Economically prosperous areas showed higher risks, indicating disparities. Targeted interventions in these areas are crucial for mitigating the risk of HFMD.展开更多
Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies...Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies.展开更多
Precipitation plays a pivotal role in wet deposition,significantly affecting aerosol purification.The efficacy of precipitation in removing aerosols depends on its type and the characteristics of the particulates invo...Precipitation plays a pivotal role in wet deposition,significantly affecting aerosol purification.The efficacy of precipitation in removing aerosols depends on its type and the characteristics of the particulates involved.However,further research is necessary to fully understand how precipitation impacts PM_(2.5)components.This study utilized high-temporalresolution data on PM_(2.5),its components and meteorological factors to examine varying responses influenced by precipitation intensity and duration.The findings indicate that increased rainfall intensity and duration enhance PM_(2.5)and its constituents removal efficiency.Specifically,longer precipitation periods significantly improve PM_(2.5)purification,especially with drizzle and light rain.Moreover,there is a direct correlation between preprecipitation PM_(2.5)levels and its scavenging rates,with drizzle potentially exacerbating PM_(2.5)pollution under cleaner conditions(≤35μg/m^(3)).Seasonally,the efficacy of removing PM_(2.5)components varies notably in response to drizzle and light rain.In spring,higher PM_(2.5)levels after drizzlewere primarily due to increased organic carbon concentrations favored by higher relative humidity and lower pH conditions compared to other seasons,conducive to secondary organic aerosol production.Lower wind speeds and higher temperatures further contribute to water-soluble organic carbon accumulation.Daytime and nighttime precipitation exerted differing influences on PM_(2.5)components,particularly in spring where daytime drizzle and light rain significantly increased PM_(2.5)and its constituents,notably NO_(3)-,potentially associated with phase distribution changes between gas and aerosol phases in low-temperature,high-RH conditions compared to nighttime.These results propose a dualimpact mechanism of precipitation on PM_(2.5)and provide scientific basis for designing effective control strategies.展开更多
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy sy...In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thio...BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thiopurines on vedolizumab trough concentrations is unknown.AIM To investigate the exposure-response relationship of vedolizumab and the impact of thiopurine withdrawal in UC patients who have achieved sustained clinical and endoscopic remission during maintenance therapy.METHODS This is a post-hoc analysis of prospective randomized clinical trial(VIEWS)involving UC patients across 8 centers in Australia from 2018 to 2022.Patients in clinical and endoscopic remission were randomized to continue or withdraw thiopurine while receiving vedolizumab.We evaluated vedolizumab serum trough concentrations,presence of anti-vedolizumab antibodies,and clinical outcomes over 48 weeks to assess exposure-response asso-ciation and impact of thiopurine withdrawal.RESULTS There were 62 UC participants with mean age of 43.4 years and 42%were females.All participants received vedolizumab as maintenance therapy with 67.7%withdrew thiopurine.Vedolizumab serum trough concentrations remained stable over 48 weeks regardless of thiopurine use,with no anti-vedolizumab antibodies detected.Pa-tients with clinical remission had higher trough concentrations at week 48.In quartile analysis,a threshold of>11.3μg/mL was associated with sustained clinical remission,showing a sensitivity of 82.4%,specificity of 60.0%,and an area of receiver operating characteristic of 0.71(95%CI:0.49-0.93).Patients discontinuing thiopurine required higher vedolizumab concentrations for achieving remission.CONCLUSION A positive exposure-response relationship between vedolizumab trough concentrations and UC outcomes suggests that monitoring drug levels may be beneficial.While thiopurine did not influence vedolizumab levels,its with-drawal may necessitate higher vedolizumab trough concentrations to maintain remission.展开更多
The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants conv...The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants convert light energy into chemical energy,to further enhance crop yields.Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency.There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods,and this increase is accompanied by improved photosynthesis.We explore various aspects of the light reactions designed to enhance crop yield,including light harvest efficiency through smart canopy systems,expanding the absorbed light spectrum to include far-red light,optimizing non-photochemical quenching,and accelerating electron transport flux.At the same time,we investigate carbon reactions that can enhance crop yield,such as manipulating Rubisco activity,improving the Calvin-Benson-Bassham cycle,introducing CO_(2)concentrating mechanisms in C_(3)plants,and optimizing carbon allocation.These strategies could significantly impact crop yield enhancement and help bridge the yield gap.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to...In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.展开更多
基金the National Natural Science Foundation of China (Nos. 52071179, 52271033)the Key Program of National Natural Science Foundation of China (No. 51931003)+2 种基金the Natural Science Foundation of Jiangsu Province, China (No. BK20221493)the Jiangsu Province Leading Edge Technology Basic Research Major Project, China (No. BK20222014)the Foundation of “Qinglan Project” for Colleges and Universities in Jiangsu Province, China。
文摘The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
文摘BACKGROUND Orthobiologics-biological substances like platelet-rich plasma(PRP),bone marrow aspirate concentrate,and stem cells-are increasingly used in musculoskeletal care to promote tissue repair and reduce reliance on invasive surgery.Despite global momentum,India's clinical adoption remains underexplored.AIM To inform education,policy,and resource allocation for the safe and effective adoption of orthobiologics in musculoskeletal care.METHODS A cross-sectional electronic survey was conducted from January to March 2025 among orthopaedic surgeons,academicians,and trainees across India.The questionnaire assessed demographics,knowledge of orthobiologics,attitudes toward training and subspecialization,usage trends,regulatory awareness,and perceived barriers.Data were analyzed using descriptive statistics andχ2/Fisher’s exact tests,with P<0.05 considered significant.RESULTS A total of 1280 valid responses were collected.Awareness of orthobiologics was high(97%),with PRP being the most familiar and widely used(80%).Formal training was reported by only 31%,though 85%showed interest in structured education,and 68%supported orthobiologics as a subspecialty.Satisfaction with clinical outcomes averaged 6.5±2.3 out of 10 points.Barriers included high treatment cost(64%),poor patient awareness(90%),and limited access to biologics labs(18%).Regulatory understanding was moderate,with academic-affiliated clinicians more informed about stem cell guidelines.CONCLUSION Indian orthopaedic professionals demonstrate strong awareness and optimism toward orthobiologics,but widespread gaps in training,infrastructure,and regulation hinder broader adoption.Strategic investments in education,standardized protocols,and accessible facilities are essential to support safe and evidence-driven integration of regenerative therapies into clinical practice.
基金funded by the National Natural Science Foundation of China(Nos.52474165 and 52522404)。
文摘Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.
基金supported by the European Research Council(ERC)under the European Union's Horizon 2020 Research and Innovation Programme(Grant Agreement No.818762)the Engineering and Physical Sciences Research Council(Grant No.EP/V048953/1)and the Isaac Newton Trust(grant 22.39(m))。
文摘Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.
文摘InP quantum dots(QDs)have been a major building block of modern display technology due to their high photoluminescence quantum yield(PLQY)in the visible spectrum,superior stability,and eco-friendly composition.However,their applications at short-wave infrared(SWIR)have been hindered by their low efficiency.Here,we report the synthesis of efficient and SWIR-emitting InP QDs by precisely controlling the InP core nucleation using a low-cost ammonia phosphorus precursor,while avoiding size-limiting ZnCl_(2) for effective copper doping.Subsequent epitaxial growth of a lattice-matched ZnSe/ZnS multishell enhanced the QD sphericity and surface smoothness and yielded a record PLQY of 66% with an emission peak at 960 nm.When QDs were integrated as the high-refractive-index luminescent core of a liquid waveguide-based luminescent solar concentrator(LSC),the device achieved an optical efficiency of 7.36%.This performance arises from their high PLQY,spectral alignment with the responsivity peak of silicon solar cells,and the optimized core/cladding waveguide structure.These results highlight the potential of InP QDs as a promising nanomaterial for SWIR emission and applications.
基金supported by the National Natural Science Foundation of China(51609247)the Henan Provincial Natural Science Foundation,China(222300420589,202300410553)+4 种基金the Central Public-interest Scientific Institution Basal Research Fund,China(FIRI2022-22)the Science&Technology Fundamental Resources Investigation Program,China(2022FY101601)the Science and Technology Project of Xinxiang City,Henan Province,China(GG2021024)the Major Special Science and Technology Project of Henan Province,China(221100110700)the Joint Fund of Science and Technology Research and Development Plan of Henan Province,China(Superior Discipline Cultivation)(222301420104)。
文摘Nitrogen(N)uptake is regulated by water availability,and a water deficit can limit crop N responses by reducing N uptake and utilization.The complex and multifaceted interplay between water availability and the crop N response makes it difficult to predict and quantify the effect of water deficit on crop N status.The nitrogen nutrition index(NNI)has been widely used to accurately diagnose crop N status and to evaluate the effectiveness of N application.The decline of NNI under water-limiting conditions has been documented,although the underlying mechanism governing this decline is not fully understood.This study aimed to elucidate the reason for the decline of NNI under waterlimiting conditions and to provide insights into the accurate utilization of NNI for assessing crop N status under different water-N interaction treatments.Rainout shelter experiments were conducted over three growing seasons from 2018 to 2021 under different N(75 and 225 kg N ha^(-1),low N and high N)and water(120 to 510 mm,W0 to W3)co-limitation treatments.Plant N accumulation,shoot biomass(SB),plant N concentration(%N),soil nitrate-N content,actual evapotranspiration(ET_a),and yield were recorded at the stem elongation,booting,anthesis and grain filling stages.Compared to W0,W1 to W3 treatments exhibited NNI values that were greater by 10.2 to 20.5%,12.6to 24.8%,14 to 24.8%,and 16.8 to 24.8%at stem elongation,booting,anthesis,and grain filling,respectively,across the 2018-2021 seasons.This decline in NNI under water-limiting conditions stemmed from two main factors.First,reduced ET_(a) and SB led to a greater critical N concentration(%N_(c))under water-limiting conditions,which contributed to the decline in NNI primarily under high N conditions.Second,changes in plant%N played a more significant role under low N conditions.Plant N accumulation exhibited a positive allometric relationship with SB and a negative relationship with soil nitrate-N content under water-limiting conditions,indicating co-regulation by SB and the soil nitrate-N content.However,this regulation was influenced by water availability.Plant N accumulation sourced from the soil nitrate-N content reflects soil N availability.Greater soil water availability facilitated greater absorption of soil nitrate-N into the plants,leading to a positive correlation between plant N accumulation and ET_(a)across the different water-N interaction treatments.Therefore,considering the impact of soil water availability is crucial when assessing soil N availability under water-limiting conditions.The findings of this study provide valuable insights into the factors contributing to the decline in NNI among different water-N interaction treatments and can contribute to the more accurate utilization of NNI for assessing winter wheat N status.
基金support from the Scientific Research Foundation for the Introduction of Talent,Anhui University of Science and Technology(2023yjrc90)the Fundamental Research Funds of the AUST(2024JBQN0015)the Open Research Fund Program of Anhui Provincial Institute of Modern Coal Processing Technology,Anhui University of Science and Technology(MTY202302).
文摘The multipath application of green resources needs to be realised under the carbon neutrality goal.Worldwide,biomass is a resource in urgent need of treatment.In this paper,corn stover biomass(YM)or biochar with different particle sizes(YMF or YMX)was added during the preparation of coal-water slurry to investigate its effect on the performance of coal-water slurry and the micro-mechanism.The results showed that the fixed viscosity concentration of coal-water slurry(CYWS)with YM was only 47.42%,and the flowability was 49.9 mm,which made the slurry performance poor.The fixed viscosity concentration of coal-water slurry(CFWS)blended with YMF and coal-water slurry(CXWS)blended with YMX increased by 10.41%and 14.24%,respectively,compared with CYWS.Meanwhile,CXWS had the lowest thixotropy and yield stress,with a yield stress of only 16.13 Pa,which was 77.31 Pa lower than that of CYWS.This indicates that YMX treated by charring and milling is more favorable to be blended with coal to prepare coal-water slurry.This is due to the enhanced hydrophilicity and electronegativity of YMX.The enhanced hydrophilicity reduces the tendency to form three-dimensional networks in coal-water slurry,while the enhanced electronegativity improves the electrostatic repulsion between particles,which is beneficial to the dispersion of particles.In the subsequent EDLVO analyses,the same idea was proved.
基金financially supported by the National Natural Science Foundation of China(Nos.52304314 and U23A20602)the Open Fund of the Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control,Ministry of Ecology and Environment+3 种基金China(No.HB202406)the Fundamental Research Funds for the Central Universities of Central South University,China(Nos.CX20240021 and 2024ZZTS0008)the Innovation and Entrepreneurship Funding Project for College Students of Central South UniversityChina(No.S202410533166)。
文摘Flotation is the most common method to recover valuable minerals by selective adsorption of collectors on target mineral surfaces.However,in subsequent hydrometallurgy of mineral flotation concentrates,the adsorbed collectors must be desorbed since it can adversely affect the efficiency of metallurgical process and produce wastewater.ZL,as a fatty acid mixture,is a typical industrially used collector for scheelite flotation in China.Sodium oleate(NaOL)has similar fatty acid group as ZL.In this study,the desorption behavior of NaOL/ZL from scheelite surface by a physical method of stirring at a low temperature was investigated.NaOL desorption tests of single mineral showed that a desorption rate of 77.75% for NaOL from scheelite surface into pulp was achieved in a stirring speed of2500 r/min at 5℃in a neutral environment.Under the above desorption condition,in the pulp containing desorbed collector by adding extra 30% normal NaOL dosage,the scheelite recovery reached about 95% in the single mineral flotation test.Desorption and reuse of ZL collector for the flotation of real scheelite ore showed only a 75%normal dosage of ZL could produce a qualified rough concentrate.The atomic force microscope(AFM)tests showed that after desorption treatment of low temperature and strong stirring,the dense strip-like structure of NaOL on the scheelite surface was destroyed to be speck-like.Molecular dynamics simulations(MDS)demonstrated that the adsorption energy between NaOL and scheelite surface was more negative at 25℃(-13.39 kcal/mol)than at 5℃(-11.50 kcal/mol)in a neutral pH,indicating that a low temperature was beneficial for the desorption of collector from mineral surface.Due to its simplicity and economy,the method we proposed of desorption of collector from mineral surface and its reuse for flotation has a great potential for industrial application.
基金the framework of the IGC SB RAS project(No.0284-2021-0003)supported by the RFFR ofi_m project(No.17-29-05022).
文摘Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake Baikal,and the Angara River,the only runoff reflecting all this aquatic diversity.River waters in the Baikal region are known to be deficient in some vital elements,including fluorine.This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem.Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method.The study represents the monitoring that was carried out between 1997 and 2022 years.We determine likely causes of high and low fluorine concentrations in the water from different components,propose and substantiate the fluorine sources,geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.
基金support by the National Natural Science Foundation of Inner Mongolia (2022SHZR1885)Natural Science Foundation of Hebei province (E2022402101,E2022402105)。
文摘To completely recover valuable elements and reduce the amount of waste,the impact of phosphoric acid on the decomposition of rare earth,fluorine and phosphorus during cyclic leaching was studied based on the characteristics of low-tempe rature sulfuric acid deco mposition.When a single monazite was leached using 75 wt% H_(2)SO_(4) solution with phosphoric acid,the size and number of monazite particles in the washing slag gradually decrease with the increase in phosphoric acid content in the leaching solution.The monazite phase can hardly be found in the slag when the phosphoric acid content reaches 70 g/L,which indicates that phosphoric acid is favorable for monazite decomposition.The mixed rare earth concentrate was leached by 75 wt% H_(2)SO_(4) containing 70 g/L phosphoric acid,the mineral compositions of the washing slag are only gypsum and unwashed rare earth sulfuric acid.After cyclic leaching of75 wt% H_(2)SO_(4),the mineral compositions of the primary leaching washing slag are mainly undecomposed monazite,rare earth sulfate and calcium sulfate.However,monazite is not found in the mineral phase of the second and third leaching washing slag.The leaching rates of rare earth and phosphorus gradually increase with the increase in cyclic leaching times.In addition,the phosphoric acid content in the leaching solution increases with the increase in the number of cyclic leaching time.However,the rising trend decreases when the phosphoric acid content reaches 50 g/L by adsorption and crystallization of phosphoric acid.A small amount of water can be used to clean the leaching residue before washing to recover the more soluble phosphorus acid according to the difference of dissolution between phosphoric acid and rare earth sulfuric acid.
基金The funding of this study was of the 2021 Shandong Province Higher Education“Young Innovative Talent Introduction and Training Program”(Public Health Safety Risk Assessment and Response Innovation Team)the annual education and teaching reform and research project at the school level of Shandong Second Medical University(No.2023YBD006)+1 种基金the Public Health Standards Research and Development Project of the National Disease Control and Prevention Bureau(No.233007)the Public Health Standards Revision and Supervision Support Project of the National Disease Control and Prevention Bureau (No.242401).
文摘Objective To assess health equity in the Yangtze River region to improve understanding of the correlation between hand, foot, and mouth disease(HFMD) and socioeconomic factors.Methods From 2014–2016, data on HFMD incidence, population statistics, economic indicators, and meteorology from 26 cities along the Yangtze River were analyzed. A multi-city random-effects metaanalysis was performed to study the relationship between temperature and HFMD transmission, and health equity was assessed with respect to socio-economic impact.Results Over the study period, 919,458 HFMD cases were reported, with Shanghai(162,303) having the highest incidence and Tongling(5,513) having the lowest. Males were more commonly affected(male-to-female ratio, 1.49:1). The exposure-response relationship had an M-shaped curve, with two HFMD peaks occurring at 4 ℃ and 26 ℃. The relative risk had two peaks at 1.30 ℃(1.834, 95% CI:1.204–2.794) and 31.4 ℃(1.143, 95% CI: 0.901–1.451), forming an M shape, with the first peak higher than the second. The most significant impact of temperature on HFMD was observed between –2 ℃ and18.1 ℃. The concentration index(0.2463) indicated moderate concentration differences, whereas the Theil index(0.0418) showed low inequality in distribution.Conclusion The incidence of HFMD varied across cities, particularly with changes in temperature.Economically prosperous areas showed higher risks, indicating disparities. Targeted interventions in these areas are crucial for mitigating the risk of HFMD.
基金supported by the National Natural Science Foundation of Shandong(No.ZR2020ZD20)the National Natural Science Foundation of China(No.22193051)+1 种基金the National Young Top-Notch Talents(No.W03070030)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202011).
文摘Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies.
基金supported by the National Natural Science Foundation of China(No.42175124)the Science and Technology Department of Sichuan Province(No.23YFS0383)the Fundamental Research Funds for the Central Universities,China(No.2023CDSN-18).
文摘Precipitation plays a pivotal role in wet deposition,significantly affecting aerosol purification.The efficacy of precipitation in removing aerosols depends on its type and the characteristics of the particulates involved.However,further research is necessary to fully understand how precipitation impacts PM_(2.5)components.This study utilized high-temporalresolution data on PM_(2.5),its components and meteorological factors to examine varying responses influenced by precipitation intensity and duration.The findings indicate that increased rainfall intensity and duration enhance PM_(2.5)and its constituents removal efficiency.Specifically,longer precipitation periods significantly improve PM_(2.5)purification,especially with drizzle and light rain.Moreover,there is a direct correlation between preprecipitation PM_(2.5)levels and its scavenging rates,with drizzle potentially exacerbating PM_(2.5)pollution under cleaner conditions(≤35μg/m^(3)).Seasonally,the efficacy of removing PM_(2.5)components varies notably in response to drizzle and light rain.In spring,higher PM_(2.5)levels after drizzlewere primarily due to increased organic carbon concentrations favored by higher relative humidity and lower pH conditions compared to other seasons,conducive to secondary organic aerosol production.Lower wind speeds and higher temperatures further contribute to water-soluble organic carbon accumulation.Daytime and nighttime precipitation exerted differing influences on PM_(2.5)components,particularly in spring where daytime drizzle and light rain significantly increased PM_(2.5)and its constituents,notably NO_(3)-,potentially associated with phase distribution changes between gas and aerosol phases in low-temperature,high-RH conditions compared to nighttime.These results propose a dualimpact mechanism of precipitation on PM_(2.5)and provide scientific basis for designing effective control strategies.
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
基金State Grid Gansu Electric Power Company Science and Technology Program(Grant No.W24FZ2730008)National Natural Science Foundation of China(Grant No.51767017).
文摘In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.
基金Supported by Takeda Australia,No.IISR-2016-101883.
文摘BACKGROUND Ulcerative colitis(UC)is a chronic inflammatory condition requiring continuous treatment and monitoring.There is limited pharmacokinetic data on vedolizumab during maintenance therapy and the effect of thiopurines on vedolizumab trough concentrations is unknown.AIM To investigate the exposure-response relationship of vedolizumab and the impact of thiopurine withdrawal in UC patients who have achieved sustained clinical and endoscopic remission during maintenance therapy.METHODS This is a post-hoc analysis of prospective randomized clinical trial(VIEWS)involving UC patients across 8 centers in Australia from 2018 to 2022.Patients in clinical and endoscopic remission were randomized to continue or withdraw thiopurine while receiving vedolizumab.We evaluated vedolizumab serum trough concentrations,presence of anti-vedolizumab antibodies,and clinical outcomes over 48 weeks to assess exposure-response asso-ciation and impact of thiopurine withdrawal.RESULTS There were 62 UC participants with mean age of 43.4 years and 42%were females.All participants received vedolizumab as maintenance therapy with 67.7%withdrew thiopurine.Vedolizumab serum trough concentrations remained stable over 48 weeks regardless of thiopurine use,with no anti-vedolizumab antibodies detected.Pa-tients with clinical remission had higher trough concentrations at week 48.In quartile analysis,a threshold of>11.3μg/mL was associated with sustained clinical remission,showing a sensitivity of 82.4%,specificity of 60.0%,and an area of receiver operating characteristic of 0.71(95%CI:0.49-0.93).Patients discontinuing thiopurine required higher vedolizumab concentrations for achieving remission.CONCLUSION A positive exposure-response relationship between vedolizumab trough concentrations and UC outcomes suggests that monitoring drug levels may be beneficial.While thiopurine did not influence vedolizumab levels,its with-drawal may necessitate higher vedolizumab trough concentrations to maintain remission.
基金funded by CAS Project for Young Scientists in Basic Research(YSBR-072-8)National Key Research and Development Program of China(2021YFF1000203 and 2022YFF1001704)。
文摘The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau.Therefore,it is essential to accelerate advancements in photosynthesis,the fundamental process by which plants convert light energy into chemical energy,to further enhance crop yields.Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency.There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods,and this increase is accompanied by improved photosynthesis.We explore various aspects of the light reactions designed to enhance crop yield,including light harvest efficiency through smart canopy systems,expanding the absorbed light spectrum to include far-red light,optimizing non-photochemical quenching,and accelerating electron transport flux.At the same time,we investigate carbon reactions that can enhance crop yield,such as manipulating Rubisco activity,improving the Calvin-Benson-Bassham cycle,introducing CO_(2)concentrating mechanisms in C_(3)plants,and optimizing carbon allocation.These strategies could significantly impact crop yield enhancement and help bridge the yield gap.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
文摘In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.