Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake...Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake Baikal,and the Angara River,the only runoff reflecting all this aquatic diversity.River waters in the Baikal region are known to be deficient in some vital elements,including fluorine.This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem.Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method.The study represents the monitoring that was carried out between 1997 and 2022 years.We determine likely causes of high and low fluorine concentrations in the water from different components,propose and substantiate the fluorine sources,geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.展开更多
In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy sy...In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.展开更多
In concentric annular pipes,the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces.The simplifications of the Ditt...In concentric annular pipes,the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces.The simplifications of the Dittus-Boelter equation for circular pipes make it unsuitable for the complex flow induced by the geometry and heat transfer coupling effects in annular pipes.This prevents it from accurately predicting the turbulent heat transfer in concentric annular pipes.This paper used realizableκ–εand low Reynolds number models to conduct numerical simulations of turbulent convective heat transfer in concentric annular pipes and circular pipes.The results indicated that the local heat transfer coefficient and Nusselt number of the inner wall surface of the annular pipe were both higher than those of the outer wall surface.The Darcy resistance coefficient decreased upon increasing the Reynolds number and increased with the inner diameter-to-outer diameter ratio.When using the equivalent diameter as the characteristic scale,the turbulent heat transfer correlation obtained from circular pipes produced significant errors when used to approximate the turbulent convective heat transfer in concentric annular pipes.This error was greater for the inner wall surface,especially when the inner and outer diameters were relatively small,as the Nusselt number error on the inner wall surface reached 60.62%.The error of the Nusselt number on the outer wall surface reached 19.51%.展开更多
The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the eff...The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the effects of ammonia nitrogen(NH_(4)^(+)-N)concentrations on NP toxicity and AHL regulation have seldom been addressed yet.This study consulted on the impacts of ZnO NPs on BNR systems when high NH_(4)^(+)-N concentrationwas available.The synergistic toxic effects of high-strength NH_(4)^(+)-N(200 mg/L)and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5%±0.2%.The increased extracellular polymeric substances(EPS)production was observed in response to the high NH_(4)^(+)-N and ZnO NP stress,which indicated the defensemechanism against the toxic effects in the BNR systemswas stimulated.Furthermore,the regulatory effects of exogenous N-decanoyl-homoserine lactone(C_(10)-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH_(4)^(+)-N concentrations.The C_(10)-HSL regulated the intracellular reactive oxygen species levels,denitrification functional enzyme activities,and antioxidant enzyme activities,respectively.This probably synergistically enhanced the defense mechanism against NP toxicity.However,compared to the low NH_(4)^(+)-N concentration of 60 mg/L,the efficacy of C_(10)-HSL was inhibited at high NH_(4)^(+)-N levels of 200 mg/L.The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats.展开更多
In order to better build the neutral beam injector with negative ion source(NNBI),the pre-research on key technologies has been carried out for the comprehensive research facility for fusion technology(CRFFT).Cesium s...In order to better build the neutral beam injector with negative ion source(NNBI),the pre-research on key technologies has been carried out for the comprehensive research facility for fusion technology(CRFFT).Cesium seeding into negative-ion sources is a prerequisite to obtain the required negative hydrogen ion.The performance of ion source largely depends on the cesium conditions in the source.It is very necessary to quantitatively measure the amount of cesium in the source during the plasma on and off periods(vacuum stage).展开更多
The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear program...The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear programming(ILP)based modeling and solution schemes that ignore the graph-related features of WAMS,in this work,the PDCP problem is solved through a heuristic graphbased two-phase procedure(TPP):topology partitioning,and phasor data concentrator(PDC)provisioning.Based on the existing minimum k-section algorithms in graph theory,the k-base topology partitioning algorithm is proposed.To improve the performance,the“center-node-last”pre-partitioning algorithm is proposed to give an initial partition before the k-base partitioning algorithm is applied.Then,the PDC provisioning algorithm is proposed to locate PDCs into the decomposed sub-graphs.The proposed TPP was evaluated on five different IEEE benchmark test power systems and the achieved overall communication performance compared to the ILP based schemes show the validity and efficiency of the proposed method.展开更多
Since meteorological conditions are the main factor driving the transport and dispersion of air pollutants,an accurate simulation of the meteorological field will directly affect the accuracy of the atmospheric chemic...Since meteorological conditions are the main factor driving the transport and dispersion of air pollutants,an accurate simulation of the meteorological field will directly affect the accuracy of the atmospheric chemical transport model in simulating PM_(2.5).Based on the NASM joint chemical data assimilation system,the authors quantified the impacts of different meteorological fields on the pollutant simulations as well as revealed the role of meteorological conditions in the accumulation,maintenance,and dissipation of heavy haze pollution.During the two heavy pollution processes from 10 to 24 November 2018,the meteorological fields were obtained using NCEP FNL and ERA5 reanalysis data,each used to drive the WRF model,to analyze the differences in the simulated PM_(2.5) concentration.The results show that the meteorological field has a strong influence on the concentration levels and spatial distribution of the pollution simulations.The ERA5 group had relatively small simulation errors,and more accurate PM_(2.5) simulation results could be obtained.The RMSE was 11.86𝜇g m^(-3)lower than that of the FNL group before assimilation,and 5.77𝜇g m^(-3)lower after joint assimilation.The authors used the PM_(2.5) simulation results obtained by ERA5 data to discuss the role of the wind field and circulation situation on the pollution process,to analyze the correlation between wind speed,temperature,relative humidity,and boundary layer height and pollutant concentrations,and to further clarify the key formation mechanism of this pollution process.展开更多
This study aimed to optimization of the in vitro fertilization system in Cỏ goat oocytes to achieve the maximum possible blastocyst development rate. In Experiment 1, we assessed the effects of IVF media on the in vit...This study aimed to optimization of the in vitro fertilization system in Cỏ goat oocytes to achieve the maximum possible blastocyst development rate. In Experiment 1, we assessed the effects of IVF media on the in vitro fertilization of Cỏ goat oocytes. There was no significant difference in the cleavage, blastocyst, or hatching rates between TALP-Fert and BO-IVF media. Experiment 2 was performed to assess the concentration of sperm in the in vitro fertilization of Cỏ goat oocytes. The matured Cỏ goat oocytes were fertilized in BO-IVF for four sperm concentrations: 5 × 105, 1 × 106, 2 × 106 and 3 × 106 sperm/ml. The blastocyst rate of 2 × 106 sperm/ml and 3 × 106 sperm/ml groups was higher than that of 5 × 105 sperm/ml and 1 × 106 sperm/ml groups (P Experiment 3 was performed to assess the IVF duration on the in vitro fertilization of Cỏ goat oocytes. The matured Cỏ goat oocytes were fertilized in BO-IVF with sperm concentration of 3 × 106 sperm/ml for 18, 20, 22 and 24 h. The cleavage, blastocyst, and hatching blastocyst rates of 18 h group were lower than those of 20, 22 and 24 h groups (P 0.05). In conclusion, the matured Cỏ goat oocytes were fertilized in BO-IVF with sperm concentration of 3 × 106 sperm/ml for 20 hours, which is suitable for the in vitro Cỏ goat embryo production.展开更多
This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilizat...This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.展开更多
A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystem...A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.展开更多
An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concret...An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.展开更多
The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron co...The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
BACKGROUND Orthobiologics-biological substances like platelet-rich plasma(PRP),bone marrow aspirate concentrate,and stem cells-are increasingly used in musculoskeletal care to promote tissue repair and reduce reliance...BACKGROUND Orthobiologics-biological substances like platelet-rich plasma(PRP),bone marrow aspirate concentrate,and stem cells-are increasingly used in musculoskeletal care to promote tissue repair and reduce reliance on invasive surgery.Despite global momentum,India's clinical adoption remains underexplored.AIM To inform education,policy,and resource allocation for the safe and effective adoption of orthobiologics in musculoskeletal care.METHODS A cross-sectional electronic survey was conducted from January to March 2025 among orthopaedic surgeons,academicians,and trainees across India.The questionnaire assessed demographics,knowledge of orthobiologics,attitudes toward training and subspecialization,usage trends,regulatory awareness,and perceived barriers.Data were analyzed using descriptive statistics andχ2/Fisher’s exact tests,with P<0.05 considered significant.RESULTS A total of 1280 valid responses were collected.Awareness of orthobiologics was high(97%),with PRP being the most familiar and widely used(80%).Formal training was reported by only 31%,though 85%showed interest in structured education,and 68%supported orthobiologics as a subspecialty.Satisfaction with clinical outcomes averaged 6.5±2.3 out of 10 points.Barriers included high treatment cost(64%),poor patient awareness(90%),and limited access to biologics labs(18%).Regulatory understanding was moderate,with academic-affiliated clinicians more informed about stem cell guidelines.CONCLUSION Indian orthopaedic professionals demonstrate strong awareness and optimism toward orthobiologics,but widespread gaps in training,infrastructure,and regulation hinder broader adoption.Strategic investments in education,standardized protocols,and accessible facilities are essential to support safe and evidence-driven integration of regenerative therapies into clinical practice.展开更多
Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly diffic...Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.展开更多
Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light condi...Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.展开更多
In this work, a simulated aircraft fuel tank inerting system has been successfully estab- lished based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the...In this work, a simulated aircraft fuel tank inerting system has been successfully estab- lished based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air), inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effective- ness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.展开更多
A two-year lysimeter study was conducted to study the effects of different fertilizers and soils on nitrogen leaching loss in a double rice cropping system by considering three major types of paddy soils from the Dong...A two-year lysimeter study was conducted to study the effects of different fertilizers and soils on nitrogen leaching loss in a double rice cropping system by considering three major types of paddy soils from the Dongting Lake area. The results showed that N concentration in the leachate did not differ significantly among the treatments of urea, controlled release N fertilizer and pig manure and that all these fertilizers produced higher total nitrogen (TN) concentrations in the leachate compared to the case where no fertilizer was applied. The TN leaching loss following urea treatment accounted for 2.28%, 0.66%, and 1.50% of the amount of N applied in the alluvial sandy loamy paddy soil (ASL), purple calcareous clayey paddy soil (PCC), and reddish-yellow loamy paddy soil (RYL), respectively. Higher TN loss was found to be correlated with the increased leachate volume in ASL compared with RYL, and the lowest TN loss was observed in the PCC, in which the lowest leachate volume and TN concentration were observed. Organic N and NH+-N were the major forms of N depleted through leachate, accounting for 56.8% and 39.7% of TN losses, respectively. Accordingly, soil-specific fertilization regimens are recommended; in particular, the maximum amount of fertilizer should be optimized for sandy soils with a high infiltration rate. To avoid a high N leaching loss from rice fields, organic N fertilizers such as urea or coated urea should primarily be used for surface topdressing or shallow-layer application and not for deep-layer application.展开更多
The nonuniform irradiation in the standard photovoltaic(PV) cells causes their relatively high series resistance,which results in a considerably lowered efficiency of PV cells.Currently the concentrator of uniform i...The nonuniform irradiation in the standard photovoltaic(PV) cells causes their relatively high series resistance,which results in a considerably lowered efficiency of PV cells.Currently the concentrator of uniform irradiation designed for concentrator photovoltaic is rare in China and lack sufficient theoretical research.In this paper,a systematic research on the solar reflective concentrator is conducted.A novel structure for a solar reflective concentrator is designed with the application of a flat mirror matrix to concentrate the sunlight for concentrator photovoltaic(CPV) systems.Sunlight beams are focused through the reflection of the mirror array on the solar cell to generate electricity.The concentrator is capable of producing much more uniform sunlight with a certain concentration ratio.The design scheme includes laying out the flat mirrors,optimizing the optical pathway and the parameters of each mirror.The prototype of the CPV system was installed at Nanjing,China.In the configuration of the prototype,it is composed of 24 pieces parallelogram flat mirrors,which are arranged into a total reflective array of 5 rows and 5 columns.In comparison with the parabolic trough concentrator,the experimental measurements verify such design has high efficiency.The concentrator model of a flat mirror matrix and the proposed new design method will lay a solid foundation for designing the concentrator of uniform irradiation.展开更多
It was focused on the effect of different sludge concentrations on the performances of an algal-activated sludge symbiotic system in terms of wastewater treatment, algal-activated sludge characteristics and community ...It was focused on the effect of different sludge concentrations on the performances of an algal-activated sludge symbiotic system in terms of wastewater treatment, algal-activated sludge characteristics and community structure. The results showed that the highest nutrient removal efficiencies were obtained in the reactor R^2 with soluble chemical oxygen demand(sC OD), ammonia nitrogen(NH_4^+-N) and phosphate(PO_4^(3-)-P) removal efficiencies of(90.6 ± 2.3)%,(97.69 ± 2.6)% and(83.81 ± 2.3)%, respectively. Further investigation exhibited that sludge concentration has a great effect on the dissolved oxygen(DO) concentration, the pH, the growth of algae and the extracellular polymeric substance(EPS) production, which resulted in influencing the settleability and the performance of symbiotic system. The denaturing gradient gel electrophoresis(DGGE) analysis demonstrated that the sludge concentration had a selective power for particular members of algae. Meantime, the stimulated algal population would selectively excite the members of bacteria benefited for the formation of algal-bacterial consortia.The variation of microbial compositions, which was influenced by the different sludge concentrations, might be ultimately responsible for the different treatment performances.展开更多
基金the framework of the IGC SB RAS project(No.0284-2021-0003)supported by the RFFR ofi_m project(No.17-29-05022).
文摘Several conjugate components represent the aquatic ecosystem of Lake Baikal:Baikal water(surface and deep water),groundwater from boreholes,water of numerous Baikal tributaries,cold and hot mineral springs around Lake Baikal,and the Angara River,the only runoff reflecting all this aquatic diversity.River waters in the Baikal region are known to be deficient in some vital elements,including fluorine.This article discusses the features of the fluorine distribution in the water from the conjugate components of the Baikal ecosystem.Fluorine ion concentrations in the water of the Baikal ecosystem was determined using the potentiometric method.The study represents the monitoring that was carried out between 1997 and 2022 years.We determine likely causes of high and low fluorine concentrations in the water from different components,propose and substantiate the fluorine sources,geological and geochemical model of its influx and distribution features in the water of the Baikal ecosystem.
基金State Grid Gansu Electric Power Company Science and Technology Program(Grant No.W24FZ2730008)National Natural Science Foundation of China(Grant No.51767017).
文摘In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.
基金Supported by the Major Program of the National Natural Science Foundation of China(Grant No.51736007).
文摘In concentric annular pipes,the difference in curvature between the inner and outer wall surfaces creates significant variations in the heat transfer characteristics of the two surfaces.The simplifications of the Dittus-Boelter equation for circular pipes make it unsuitable for the complex flow induced by the geometry and heat transfer coupling effects in annular pipes.This prevents it from accurately predicting the turbulent heat transfer in concentric annular pipes.This paper used realizableκ–εand low Reynolds number models to conduct numerical simulations of turbulent convective heat transfer in concentric annular pipes and circular pipes.The results indicated that the local heat transfer coefficient and Nusselt number of the inner wall surface of the annular pipe were both higher than those of the outer wall surface.The Darcy resistance coefficient decreased upon increasing the Reynolds number and increased with the inner diameter-to-outer diameter ratio.When using the equivalent diameter as the characteristic scale,the turbulent heat transfer correlation obtained from circular pipes produced significant errors when used to approximate the turbulent convective heat transfer in concentric annular pipes.This error was greater for the inner wall surface,especially when the inner and outer diameters were relatively small,as the Nusselt number error on the inner wall surface reached 60.62%.The error of the Nusselt number on the outer wall surface reached 19.51%.
基金supported by the National Natural Science Foundation of China(No.52270119).
文摘The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the effects of ammonia nitrogen(NH_(4)^(+)-N)concentrations on NP toxicity and AHL regulation have seldom been addressed yet.This study consulted on the impacts of ZnO NPs on BNR systems when high NH_(4)^(+)-N concentrationwas available.The synergistic toxic effects of high-strength NH_(4)^(+)-N(200 mg/L)and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5%±0.2%.The increased extracellular polymeric substances(EPS)production was observed in response to the high NH_(4)^(+)-N and ZnO NP stress,which indicated the defensemechanism against the toxic effects in the BNR systemswas stimulated.Furthermore,the regulatory effects of exogenous N-decanoyl-homoserine lactone(C_(10)-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH_(4)^(+)-N concentrations.The C_(10)-HSL regulated the intracellular reactive oxygen species levels,denitrification functional enzyme activities,and antioxidant enzyme activities,respectively.This probably synergistically enhanced the defense mechanism against NP toxicity.However,compared to the low NH_(4)^(+)-N concentration of 60 mg/L,the efficacy of C_(10)-HSL was inhibited at high NH_(4)^(+)-N levels of 200 mg/L.The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats.
基金supported by the HFIPS Director’s Fund(Nos.YZJJQY202204 and 2021YZGH02)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)+1 种基金the Natural Science Foundation of Anhui Province(No.2208085MA19)the National Key R&D Program of China(Nos.2017YFE300103 and 2017YFE300503)。
文摘In order to better build the neutral beam injector with negative ion source(NNBI),the pre-research on key technologies has been carried out for the comprehensive research facility for fusion technology(CRFFT).Cesium seeding into negative-ion sources is a prerequisite to obtain the required negative hydrogen ion.The performance of ion source largely depends on the cesium conditions in the source.It is very necessary to quantitatively measure the amount of cesium in the source during the plasma on and off periods(vacuum stage).
基金supported by the National Key Research and Development Program of China(2023YFB 2906403).
文摘The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear programming(ILP)based modeling and solution schemes that ignore the graph-related features of WAMS,in this work,the PDCP problem is solved through a heuristic graphbased two-phase procedure(TPP):topology partitioning,and phasor data concentrator(PDC)provisioning.Based on the existing minimum k-section algorithms in graph theory,the k-base topology partitioning algorithm is proposed.To improve the performance,the“center-node-last”pre-partitioning algorithm is proposed to give an initial partition before the k-base partitioning algorithm is applied.Then,the PDC provisioning algorithm is proposed to locate PDCs into the decomposed sub-graphs.The proposed TPP was evaluated on five different IEEE benchmark test power systems and the achieved overall communication performance compared to the ILP based schemes show the validity and efficiency of the proposed method.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program of Ministry of Science and Technology of the People's Republic of China[grant number 2022QZKK0101]the Science and Technology Department of the Tibet Program[grant number XZ202301ZY0035G]。
文摘Since meteorological conditions are the main factor driving the transport and dispersion of air pollutants,an accurate simulation of the meteorological field will directly affect the accuracy of the atmospheric chemical transport model in simulating PM_(2.5).Based on the NASM joint chemical data assimilation system,the authors quantified the impacts of different meteorological fields on the pollutant simulations as well as revealed the role of meteorological conditions in the accumulation,maintenance,and dissipation of heavy haze pollution.During the two heavy pollution processes from 10 to 24 November 2018,the meteorological fields were obtained using NCEP FNL and ERA5 reanalysis data,each used to drive the WRF model,to analyze the differences in the simulated PM_(2.5) concentration.The results show that the meteorological field has a strong influence on the concentration levels and spatial distribution of the pollution simulations.The ERA5 group had relatively small simulation errors,and more accurate PM_(2.5) simulation results could be obtained.The RMSE was 11.86𝜇g m^(-3)lower than that of the FNL group before assimilation,and 5.77𝜇g m^(-3)lower after joint assimilation.The authors used the PM_(2.5) simulation results obtained by ERA5 data to discuss the role of the wind field and circulation situation on the pollution process,to analyze the correlation between wind speed,temperature,relative humidity,and boundary layer height and pollutant concentrations,and to further clarify the key formation mechanism of this pollution process.
文摘This study aimed to optimization of the in vitro fertilization system in Cỏ goat oocytes to achieve the maximum possible blastocyst development rate. In Experiment 1, we assessed the effects of IVF media on the in vitro fertilization of Cỏ goat oocytes. There was no significant difference in the cleavage, blastocyst, or hatching rates between TALP-Fert and BO-IVF media. Experiment 2 was performed to assess the concentration of sperm in the in vitro fertilization of Cỏ goat oocytes. The matured Cỏ goat oocytes were fertilized in BO-IVF for four sperm concentrations: 5 × 105, 1 × 106, 2 × 106 and 3 × 106 sperm/ml. The blastocyst rate of 2 × 106 sperm/ml and 3 × 106 sperm/ml groups was higher than that of 5 × 105 sperm/ml and 1 × 106 sperm/ml groups (P Experiment 3 was performed to assess the IVF duration on the in vitro fertilization of Cỏ goat oocytes. The matured Cỏ goat oocytes were fertilized in BO-IVF with sperm concentration of 3 × 106 sperm/ml for 18, 20, 22 and 24 h. The cleavage, blastocyst, and hatching blastocyst rates of 18 h group were lower than those of 20, 22 and 24 h groups (P 0.05). In conclusion, the matured Cỏ goat oocytes were fertilized in BO-IVF with sperm concentration of 3 × 106 sperm/ml for 20 hours, which is suitable for the in vitro Cỏ goat embryo production.
文摘This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.
基金This research was supported by National Basic Research Program of China (No.2002CB412502)Project of Key Pro-gram of the National Science Foundation of China (No.90411020)Natural Science Foundation of China (No.30400051)
文摘A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.
文摘An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.
基金the National Natural Science Foundation of China (Nos. 52071179, 52271033)the Key Program of National Natural Science Foundation of China (No. 51931003)+2 种基金the Natural Science Foundation of Jiangsu Province, China (No. BK20221493)the Jiangsu Province Leading Edge Technology Basic Research Major Project, China (No. BK20222014)the Foundation of “Qinglan Project” for Colleges and Universities in Jiangsu Province, China。
文摘The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
文摘BACKGROUND Orthobiologics-biological substances like platelet-rich plasma(PRP),bone marrow aspirate concentrate,and stem cells-are increasingly used in musculoskeletal care to promote tissue repair and reduce reliance on invasive surgery.Despite global momentum,India's clinical adoption remains underexplored.AIM To inform education,policy,and resource allocation for the safe and effective adoption of orthobiologics in musculoskeletal care.METHODS A cross-sectional electronic survey was conducted from January to March 2025 among orthopaedic surgeons,academicians,and trainees across India.The questionnaire assessed demographics,knowledge of orthobiologics,attitudes toward training and subspecialization,usage trends,regulatory awareness,and perceived barriers.Data were analyzed using descriptive statistics andχ2/Fisher’s exact tests,with P<0.05 considered significant.RESULTS A total of 1280 valid responses were collected.Awareness of orthobiologics was high(97%),with PRP being the most familiar and widely used(80%).Formal training was reported by only 31%,though 85%showed interest in structured education,and 68%supported orthobiologics as a subspecialty.Satisfaction with clinical outcomes averaged 6.5±2.3 out of 10 points.Barriers included high treatment cost(64%),poor patient awareness(90%),and limited access to biologics labs(18%).Regulatory understanding was moderate,with academic-affiliated clinicians more informed about stem cell guidelines.CONCLUSION Indian orthopaedic professionals demonstrate strong awareness and optimism toward orthobiologics,but widespread gaps in training,infrastructure,and regulation hinder broader adoption.Strategic investments in education,standardized protocols,and accessible facilities are essential to support safe and evidence-driven integration of regenerative therapies into clinical practice.
基金funded by the National Natural Science Foundation of China(Nos.52474165 and 52522404)。
文摘Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.
基金supported by the European Research Council(ERC)under the European Union's Horizon 2020 Research and Innovation Programme(Grant Agreement No.818762)the Engineering and Physical Sciences Research Council(Grant No.EP/V048953/1)and the Isaac Newton Trust(grant 22.39(m))。
文摘Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.
文摘In this work, a simulated aircraft fuel tank inerting system has been successfully estab- lished based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air), inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effective- ness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.
基金Supported by the National Natural Science Foundation of China (No.40771120)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period (No.2007BAD87B11)
文摘A two-year lysimeter study was conducted to study the effects of different fertilizers and soils on nitrogen leaching loss in a double rice cropping system by considering three major types of paddy soils from the Dongting Lake area. The results showed that N concentration in the leachate did not differ significantly among the treatments of urea, controlled release N fertilizer and pig manure and that all these fertilizers produced higher total nitrogen (TN) concentrations in the leachate compared to the case where no fertilizer was applied. The TN leaching loss following urea treatment accounted for 2.28%, 0.66%, and 1.50% of the amount of N applied in the alluvial sandy loamy paddy soil (ASL), purple calcareous clayey paddy soil (PCC), and reddish-yellow loamy paddy soil (RYL), respectively. Higher TN loss was found to be correlated with the increased leachate volume in ASL compared with RYL, and the lowest TN loss was observed in the PCC, in which the lowest leachate volume and TN concentration were observed. Organic N and NH+-N were the major forms of N depleted through leachate, accounting for 56.8% and 39.7% of TN losses, respectively. Accordingly, soil-specific fertilization regimens are recommended; in particular, the maximum amount of fertilizer should be optimized for sandy soils with a high infiltration rate. To avoid a high N leaching loss from rice fields, organic N fertilizers such as urea or coated urea should primarily be used for surface topdressing or shallow-layer application and not for deep-layer application.
基金supported by National Natural Science Foundation of China (Grant No. 50775035)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2006AA050203,Grant No. 2007AA04Z421)
文摘The nonuniform irradiation in the standard photovoltaic(PV) cells causes their relatively high series resistance,which results in a considerably lowered efficiency of PV cells.Currently the concentrator of uniform irradiation designed for concentrator photovoltaic is rare in China and lack sufficient theoretical research.In this paper,a systematic research on the solar reflective concentrator is conducted.A novel structure for a solar reflective concentrator is designed with the application of a flat mirror matrix to concentrate the sunlight for concentrator photovoltaic(CPV) systems.Sunlight beams are focused through the reflection of the mirror array on the solar cell to generate electricity.The concentrator is capable of producing much more uniform sunlight with a certain concentration ratio.The design scheme includes laying out the flat mirrors,optimizing the optical pathway and the parameters of each mirror.The prototype of the CPV system was installed at Nanjing,China.In the configuration of the prototype,it is composed of 24 pieces parallelogram flat mirrors,which are arranged into a total reflective array of 5 rows and 5 columns.In comparison with the parabolic trough concentrator,the experimental measurements verify such design has high efficiency.The concentrator model of a flat mirror matrix and the proposed new design method will lay a solid foundation for designing the concentrator of uniform irradiation.
基金supported by the HIT Environment and Ecology Innovation Special Funds (No.HSCJ201609)the Applied Technology Research and Development Program of Harbin (No.2017AB4AS035)+1 种基金the National Natural Science Foundation of China (No.51708157)Harbin Youth Talent Support Program (No.2017RAQXJ230)
文摘It was focused on the effect of different sludge concentrations on the performances of an algal-activated sludge symbiotic system in terms of wastewater treatment, algal-activated sludge characteristics and community structure. The results showed that the highest nutrient removal efficiencies were obtained in the reactor R^2 with soluble chemical oxygen demand(sC OD), ammonia nitrogen(NH_4^+-N) and phosphate(PO_4^(3-)-P) removal efficiencies of(90.6 ± 2.3)%,(97.69 ± 2.6)% and(83.81 ± 2.3)%, respectively. Further investigation exhibited that sludge concentration has a great effect on the dissolved oxygen(DO) concentration, the pH, the growth of algae and the extracellular polymeric substance(EPS) production, which resulted in influencing the settleability and the performance of symbiotic system. The denaturing gradient gel electrophoresis(DGGE) analysis demonstrated that the sludge concentration had a selective power for particular members of algae. Meantime, the stimulated algal population would selectively excite the members of bacteria benefited for the formation of algal-bacterial consortia.The variation of microbial compositions, which was influenced by the different sludge concentrations, might be ultimately responsible for the different treatment performances.