期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Compensation for amplitude error and phase delay in real-time hybrid simulation using frequency domain analysis
1
作者 Xu Weijie Meng Xiangjin +2 位作者 Peng Changle Guo Tong Chen Cheng 《Earthquake Engineering and Engineering Vibration》 2025年第3期697-711,共15页
Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentiall... Actuator dynamics introduce a synchronization disparity between commanded displacements transmitted to the actuator and the actual displacements generated by the actuator,thereby affecting its precision and potentially leading to instability in real-time hybrid simulation(RTHS).This study aims to elucidate the relationship between calculated and measured displacements by analyzing their magnitude and phase in the frequency domain via transformations.The physical implications of these relationships are explored in the context of frequency domain evaluation indices(FEI),the transfer function of actuator dynamics,and delay compensation.Formulations for achieving perfect compensation of actuator dynamics are developed,and an enhanced compensation approach,termed improved windowed frequency domain evaluation index-based compensation(IWFEI),is introduced.The efficacy of IWFEI is assessed using a RTHS benchmark model,with perturbed simulations conducted to validate its robustness.Uncertainties inherent in actuator dynamics are represented as random variables in these simulations.Comparative analysis of the mean values and variances of evaluation criteria demonstrates that IWFEI enables more accurate and robust compensation.Furthermore,strong correlations observed among criteria in the time and frequency domains underscore the effectiveness of the proposed frequency domain-based compensation method in mitigating amplitude errors and phase delays in RTHS. 展开更多
关键词 recycled concrete frame-shear wall concealed bracings shaking table test nonlinear time-history response analysis
在线阅读 下载PDF
Ground conditions and foundation types:Unraveling their impact on seismic response of high-rise buildings within dynamic soil-structure interaction
2
作者 Xiaofeng Zhang Harry Far 《Earthquake Engineering and Engineering Vibration》 2025年第4期927-941,共15页
Structures modelled with flexible-base assumptions,incorporating soil effects,generally exhibit longer natural periods and higher damping compared to fixed-base models that exclude soil-structure interaction(SSI).Howe... Structures modelled with flexible-base assumptions,incorporating soil effects,generally exhibit longer natural periods and higher damping compared to fixed-base models that exclude soil-structure interaction(SSI).However,the beneficial or detrimental nature of SSI remains contentious in current earthquake damage analyses and research findings.This study introduces a numerical modelling technique,validated by experimental shaking table tests,to examine the effects of SSI on high-rise buildings.The study considers various substructure parameters,including foundation types,soil types,and bedrock depths.Both advantageous and adverse impacts of SSI are identified and analysed.Numerical simulations reveal that increased subsoil stiffness significantly amplifies the base shear of structures compared to bedrock depth effects.Additionally,increased foundation rocking results in higher inter-storey drifts and reduced base shear.Overall,SSI tends to amplify inter-storey drifts,indicating detrimental effects.Specifically,the study found that the inclusion of SSI increased maximum inter-storey drifts by up to 38%,particularly in softer soils,while reducing base shear by up to 44%in structures with classical compensated foundations on D_(e)and E_(e)soil types.In contrast,piled foundation systems experienced an increase in base shear of up to 27%under the same conditions.Conversely,SSI has beneficial impacts on base shear for structures with classical compensated foundations on soil types of D_(e)and E_(e),as it reduces the base shear.For structures with piled foundations and those with classical compensated foundations on C_(e)soil,SSI effects are detrimental.C_(e),D_(e),and E_(e)soils correspond to geotechnical classifications per AS1170,representing stiff,medium,and soft soils respectively.The study also presents minimum base shear ratios considering SSI reduction effects for various foundation types. 展开更多
关键词 recycled concrete frame-shear wall concealed bracings shaking table test nonlinear time-history response analysis
在线阅读 下载PDF
Shaking table experimental study of recycled concrete frame-shear wall structures 被引量:8
3
作者 Zhang Jianwei Cao Wanlin +2 位作者 Meng Shaobin Yu Cheng Dong Hongying 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期257-267,共11页
In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea... In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings. 展开更多
关键词 recycled concrete frame-shear wall concealed bracings shaking table test nonlinear time-history response analysis
在线阅读 下载PDF
Seismic risk assessment for developing countries: Pakistan as a case study 被引量:2
4
作者 Shaukat A.Khan Kypros Pilakoutas +2 位作者 Iman Hajirasouliha Reyes Garcia Maurizio Guadagnini 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期787-804,共18页
Modern Earthquake Risk Assessment(ERA) methods usually require seismo-tectonic information for Probabilistic Seismic Hazard Assessment(PSHA) that may not be readily available in developing countries. To bypass thi... Modern Earthquake Risk Assessment(ERA) methods usually require seismo-tectonic information for Probabilistic Seismic Hazard Assessment(PSHA) that may not be readily available in developing countries. To bypass this drawback, this paper presents a practical event-based PSHA method that uses instrumental seismicity, available historical seismicity, as well as limited information on geology and tectonic setting. Historical seismicity is integrated with instrumental seismicity to determine the long-term hazard. The tectonic setting is included by assigning seismic source zones associated with known major faults. Monte Carlo simulations are used to generate earthquake catalogues with randomized key hazard parameters. A case study region in Pakistan is selected to demonstrate the effectiveness of the method. The results indicate that the proposed method produces seismic hazard maps consistent with previous studies, thus being suitable for generating such maps in regions where limited data are available. The PSHA procedure is developed as an integral part of an ERA framework named EQRAM. The framework is also used to determine seismic risk in terms of annual losses for the study region. 展开更多
关键词 recycled concrete frame-shear wall concealed bracings shaking table test nonlinear time-history responseanalysis
在线阅读 下载PDF
A hybrid artificial bee colony algorithm and support vector machine for predicting blast-induced ground vibration
5
作者 Zhu Chun Xu Yingze +4 位作者 Wu Yongxin He Manchao Zhu Chuanqi Meng Qingxiang Lin Yun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期861-876,共16页
Because nearby construction has harmful effects,precisely predicting blast-induced ground vibration is critical.In this paper,a hybrid artificial bee colony(ABC)and support vector machine(SVM)model was proposed for pr... Because nearby construction has harmful effects,precisely predicting blast-induced ground vibration is critical.In this paper,a hybrid artificial bee colony(ABC)and support vector machine(SVM)model was proposed for predicting the value of peak particle velocity(PPV),which is used to describe blast-induced ground vibration.To construct the model,5 potentially relevant factors,including controllable and uncontrollable parameters,were considered as input parameters,and PPV was set as the output parameter.Forty-five samples were recorded from the Hongling lead-zinc mine.An ABC-SVM model was developed and trained on 35 samples via 5-fold cross-validation(CV).A testing set(10 samples)was used to evaluate the prediction performance of the ABC-SVM model.SVM and four empirical models(United States Bureau of Mines(USBM),Amraseys-Hendron(A-H),Langefors-Kihstrom(L-K),and Central Mining Research Institute(CMRI))also were introduced for comparison.Next,the performances of the models were analyzed by using 3 statistical parameters:the correlation coefficient(R2),root-mean-square error(RMSE),and variance accounted for(VAF).ABC-SVM had the highest R2 and VAF values followed by the SVM,A-H,USBM,CMRI,and L-K methods.The results demonstrated that ABC-SVM outperformed SVM and the empirical predictors for predicting PPV.Moreover,the best results from the R2,RMSE,and VAF indices were 0.9628,0.2737,and 96.05%for the ABC-SVM model.The sensitivities of the parameters also were investigated,and the height difference between the blast point and the monitoring station was found to be the parameter that had the most influence on PPV. 展开更多
关键词 recycled concrete frame-shear wall concealed bracings shaking table test nonlinear time-history response analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部