Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual’s daily behavior.As detecting cardiovascular diseases can dramatically reduce mortality,...Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual’s daily behavior.As detecting cardiovascular diseases can dramatically reduce mortality,arrhythmia recognition using ECG signals has attracted much attention.In this paper,we propose a singlechannel convolutional neural network to detect Atrial Fibrillation(AF)based on ECG signals collected by wearable devices.It contains 3 primary modules.All recordings are firstly uniformly sized,normalized,and Butterworth low-pass filtered for noise removal.Then the preprocessed ECG signals are fed into convolutional layers for feature extraction.In the classification module,the preprocessed signals are fed into convolutional layers containing large kernels for feature extraction,and the fully connected layer provides probabilities.During the training process,the output of the previous pooling layer is concatenated with the vectors of the convolutional layer as a new feature map to reduce feature loss.Numerous comparison and ablation experiments are performed on the 2017 PhysioNet/CinC Challenge dataset,demonstrating the superiority of the proposed method.展开更多
In this paper, taking the 2+1-dimensional sine-Gordon equation as an example, we present the concatenating method to construct the multisymplectic schemes. The method is to discretizee independently the PDEs in differ...In this paper, taking the 2+1-dimensional sine-Gordon equation as an example, we present the concatenating method to construct the multisymplectic schemes. The method is to discretizee independently the PDEs in different directions with symplectic schemes, so that the multisymplectic schemes can be constructed by concatenating those symplectic schemes. By this method, we can construct multisymplectic schemes, including some widely used schemes with an accuracy of any order. The numerical simulation on the collisions of solitons are also proposed to illustrate the efficiency of the multisymplectic schemes.展开更多
Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amo...Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amount of sample requirement and time-consuming sample collection severely hinder its applications.We herein propose a spectral concatenation strategy for residual neural network using nonspecific and specific SERS spectra for the training data augmentation,which is accessible to acquiring larger training dataset with same number of SERS spectra or same size of training dataset with fewer SERS spectra,compared with pure non-specific SERS spectra.With this strategy,the training loss exhibit rapid convergence,and an average accuracy up to 100%in bacteria classifications was achieved with50 SERS spectra for each kind of bacterium;even reduced to 20 SERS spectra per kind of bacterium,classification accuracy is still>95%,demonstrating marked advantage over the results without spectra concatenation.This method can markedly improve the classification accuracy under fewer samples and reduce the data collection workload,and can evidently enhance the performance when used in different machine learning models with high generalization ability.Therefore,this strategy is beneficial for rapid and accurate bacteria classifications with residual neural network.展开更多
Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulti...Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.展开更多
We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be ...We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .展开更多
To improve the performance of the short interleaved serial concatenated convolutional code(SCCC) with low decoding iterative times, the structure of Log MAP algorithm is introduced into the conventional SOVA decoder...To improve the performance of the short interleaved serial concatenated convolutional code(SCCC) with low decoding iterative times, the structure of Log MAP algorithm is introduced into the conventional SOVA decoder to improve its performance at short interleaving delay. The combination of Log MAP and SOVA avoids updating the matrices of the maximum path, and also makes a contribution to the requirement of short delay. The simulation results of several SCCCs show that the improved decoder can obtain satisfied performance with short frame interleaver and it is suitable to the high bit rate low delay communication systems.展开更多
In this paper, direct sequence spread spectrum multiple access (DS/SSMA) communication system employing serially concatenated trellis coded modulation (TCM) and continuous phase modulation (CPM) over flat Rayleigh fa...In this paper, direct sequence spread spectrum multiple access (DS/SSMA) communication system employing serially concatenated trellis coded modulation (TCM) and continuous phase modulation (CPM) over flat Rayleigh fading channel are presented. The performance of this concatenated TCM/CPM DS/SSMA system is exploited by the theoretical analysis and numerical simulations. The results demonstrate that significant improvements in error probability of this DS/SSMA system over the system with single TCM or CPM of different modulation indices can be achieved under the same conditions.展开更多
Text extraction from images using the traditional techniques of image collecting,and pattern recognition using machine learning consume time due to the amount of extracted features from the images.Deep Neural Networks...Text extraction from images using the traditional techniques of image collecting,and pattern recognition using machine learning consume time due to the amount of extracted features from the images.Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results.This study proposes using Dual Maxpooling and concatenating convolution Neural Networks(CNN)layers with the activation functions Relu and the Optimized Leaky Relu(OLRelu).The proposed method works by dividing the word image into slices that contain characters.Then pass them to deep learning layers to extract feature maps and reform the predicted words.Bidirectional Short Memory(BiLSTM)layers extractmore compelling features and link the time sequence fromforward and backward directions during the training phase.The Connectionist Temporal Classification(CTC)function calcifies the training and validation loss rates.In addition to decoding the extracted feature to reform characters again and linking them according to their time sequence.The proposed model performance is evaluated using training and validation loss errors on the Mjsynth and Integrated Argument Mining Tasks(IAM)datasets.The result of IAM was 2.09%for the average loss errors with the proposed dualMaxpooling and OLRelu.In the Mjsynth dataset,the best validation loss rate shrunk to 2.2%by applying concatenating CNN layers,and Relu.展开更多
This paper studies the decoding performance of low-density parity-check(LDPC)codes in a serial concatenation system with polar codes employing the successive cancellation(SC)decoding.It is known that the absolute inco...This paper studies the decoding performance of low-density parity-check(LDPC)codes in a serial concatenation system with polar codes employing the successive cancellation(SC)decoding.It is known that the absolute incorrect log-likelihood ratio(LLR)values from the SC decoding can be very large.This phenomenon dramatically deteriorates the error correcting performance of the outer LDPC codes.In this paper,the LLR values of polar codes are regulated by a log processing before being sent to the LDPC decoder.Simulation results show that the log processing is an efficient approach with a low optimization complexity compared with the existing procedures to improve the performance of the serial concatenation systems.展开更多
A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection ...A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection (RSSD),it has more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number,thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the perform-ance degradation is little with proper reduction scheme.展开更多
There has been a significant interest of researchers to combine different schemes focused on optimizing energy performance while developing aMAC protocol for Wireless Sensor Networks(WSNs).In this paper,we propose to ...There has been a significant interest of researchers to combine different schemes focused on optimizing energy performance while developing aMAC protocol for Wireless Sensor Networks(WSNs).In this paper,we propose to integrate two cross-layer schemes:dynamic channel polling and packet concatenation using a recent asynchronous MAC protocol“Adaptive&Dynamic Polling MAC”(ADPMAC).ADP-MAC dynamically selects the polling interval distribution based on characterization of incoming traffic patterns using Coefficient of variation(CV).Packet Concatenation(PC)refers to combining the individually generated data packets into a single super packet and sending it at the polling instant.Also,the Block Acknowledgement(BA)scheme has been developed for ADP-MAC to work in conjunction with the packet concatenation.The proposed schemes have been implemented in Tiny-OS for Mica2 platform and Avrora emulator has been used for conducting experiments.Simulation results have revealed that the performance both in terms of energy&packet loss improves when ADP-MAC is used in conjunction with the additional features of PC&BA.Furthermore,the proposed scheme has been compared with a stateof-art packet concatenation primitive PiP(Packet-in-Packet).It has been observed that ADP-MAC supersedes the performance of PiP in terms of PDR(Packet Delivery Ratio)due to better management of synchronization between source and sink.展开更多
A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance co...A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance codes with flexible interleaver size. Coset based MAP soft in/soft out decoding algorithms are presented for the F24 code. Simulation results show that the proposed coding scheme can achieve high coding gain with flexible interleaver length and very low decoding complexity.展开更多
The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existin...The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+ Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore, the simulation results for the RS(255,239) +RS(255,239) code and the RS(255,239) +RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction, moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes, and their signal to noise ratio gains are respectively 2-3 dB more than that of the RS(255,239)code at the bit error rate of 1 × 10^-13. Finally, the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.展开更多
Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmiss...Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.展开更多
Among mammalian phylogenies,those characterized by rapid radiations are particularly problematic.The New World monkeys(NWMs,Platyrrhini)comprise 3 families and 7 subfamilies,which radiated within a relatively short ti...Among mammalian phylogenies,those characterized by rapid radiations are particularly problematic.The New World monkeys(NWMs,Platyrrhini)comprise 3 families and 7 subfamilies,which radiated within a relatively short time period.Accordingly,their phylogenetic relationships are still largely disputed.In the present study,56 nuclear non-coding loci,including 33 introns(INs)and 23 intergenic regions(IGs),from 20 NWM individuals representing 18 species were used to investigate phylogenetic relationships among families and subfamilies.Of the 56 loci,43 have not been used in previous NWM phylogenetics.We applied concatenation and coalescence tree-inference methods,and a recently proposed question-specific approach to address NWM phylogeny.Our results indicate incongruence between concatenation and coalescence methods for the IN and IG datasets.However,a consensus was reached with a single tree topology from all analyses of combined INs and IGs as well as all analyses of question-specific loci using both concatenation and coalescence methods,albeit with varying degrees of statistical support.In detail,our results indicated the sister-group relationships between the families Atelidae and Pitheciidae,and between the subfamilies Aotinae and Callithrichinae among Cebidae.Our study provides insights into the disputed phylogenetic relationships among NWM families and subfamilies from the perspective of multiple non-coding loci and various tree-inference approaches.However,the present phylogenetic framework needs further evaluation by adding more independent sequence data and a deeper taxonomic sampling.Overall,our work has important implications for phylogenetic studies dealing with rapid radiations.展开更多
Species in genus Nannochloropsis,especially N.oceanica and N.gaditana,have been evolving as the model microalgae for both application and theory studies.The position effect of genome integration,the carrying capabilit...Species in genus Nannochloropsis,especially N.oceanica and N.gaditana,have been evolving as the model microalgae for both application and theory studies.The position effect of genome integration,the carrying capability limitation of integrative vectors and the instability of non-integrative vectors have hindered Nannochloropsis genetic modification with concatenate genes and extremely long DNA fragments.The molecular tools including genetic transformation,homologous recombination,gene edition,gene stacking and episome vectors for transient gene expression and diverse reporters and selection markers have been rapidly developing in Nannochloropsis species.The construction of animal and plant artificial chromosomes with“top down”strategy has set fine examples for the construction of Nannochloropsis artificial chromosomes(NannoACs).It seems that the methods and materials to set the foundation for constructing NannoACs are at hands.In this review,we outlined the current status of transgenes in Nannochloropsis species,summarized the limitations of both integrative and non-integrative vectors,and proposed a tentative approach to construct NannoACs by doubling and stabilizing the genome first,and then truncating the natural chromosomes.NannoACs once constructed will facilitate transferring the desired traits and concatenate genes into Nannochloropsis genetic backgrounds,thus contributing towards its genetic improvement and synthetic biological studies.展开更多
Eight oligonucleotide fragments were designed with the aid of a computer and synthesizedaccording to the amino add sequcnce of human atrial natriuretic factor(ANF).By means of an-nealing and ligation,these fragments w...Eight oligonucleotide fragments were designed with the aid of a computer and synthesizedaccording to the amino add sequcnce of human atrial natriuretic factor(ANF).By means of an-nealing and ligation,these fragments were assembled into an overlapping concatenator consisting oftwo ANF genes ligated by TGATG for termination and initiation of translation.Theconcatenator was omserted into plasmid pRC23 and the recobinant DNA was transformed into E.coli strain TAP106.Analysis by restriction enzyme mapping,hybridization and DNA sequenongshowed that the orientation and reading frame of the gene were correct.展开更多
In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this...In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this work,we construct new families of asymmetric quantum concatenated codes(AQCCs)to deal with such biased quantum noise.Our construction is based on a novel concatenation scheme for constructing AQCCs with large asymmetries,in which classical tensor product codes and concatenated codes are utilized to correct phase flip noise and bit flip noise,respectively.We generalize the original concatenation scheme to a more general case for better correcting degenerate errors.Moreover,we focus on constructing nonbinary AQCCs that are highly degenerate.Compared to previous literatures,AQCCs constructed in this paper show much better parameter performance than existed ones.Furthermore,we design the specific encoding circuit of the AQCCs.It is shown that our codes can be encoded more efficiently than standard quantum codes.展开更多
In this work,we study the performance of one shot and concatenated deleting machines(DMs).We show that the output state of one shot DMs are mixed inseparable,and do not violate Bell's inequality but can be used as...In this work,we study the performance of one shot and concatenated deleting machines(DMs).We show that the output state of one shot DMs are mixed inseparable,and do not violate Bell's inequality but can be used as a teleportation channel for all values of the input state parameters.On the other hand,we observe in the concatenation of different DMs that the output states are mixed inseparable and do not violate Bell's inequality,and cannot be used as a teleportation channel.Further,some important attributes such as inseparability,violation of Bell's inequality,and teleportation fidelity of the DMs remain unchanged under the order of concatenation.In this context of a teleportation channel,one shot DMs are useful when compared to concatenated DMs.展开更多
基金funded by the National Natural Science Foundation of China(No.62171114)the Fundamental Research Funds for the Central Universities(No.DUT22RC(3)099)Xiaomi Young Talents Program.
文摘Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual’s daily behavior.As detecting cardiovascular diseases can dramatically reduce mortality,arrhythmia recognition using ECG signals has attracted much attention.In this paper,we propose a singlechannel convolutional neural network to detect Atrial Fibrillation(AF)based on ECG signals collected by wearable devices.It contains 3 primary modules.All recordings are firstly uniformly sized,normalized,and Butterworth low-pass filtered for noise removal.Then the preprocessed ECG signals are fed into convolutional layers for feature extraction.In the classification module,the preprocessed signals are fed into convolutional layers containing large kernels for feature extraction,and the fully connected layer provides probabilities.During the training process,the output of the previous pooling layer is concatenated with the vectors of the convolutional layer as a new feature map to reduce feature loss.Numerous comparison and ablation experiments are performed on the 2017 PhysioNet/CinC Challenge dataset,demonstrating the superiority of the proposed method.
基金This work was supported by the National Natural Science Foundation of China Innovation Group(No.40221503)the CAS Hundred Talent Project,the National Key Development Planning Project for the Basic Research(No.1999032081)the National Natural Science Foundation of China(Grant No.10226012).
文摘In this paper, taking the 2+1-dimensional sine-Gordon equation as an example, we present the concatenating method to construct the multisymplectic schemes. The method is to discretizee independently the PDEs in different directions with symplectic schemes, so that the multisymplectic schemes can be constructed by concatenating those symplectic schemes. By this method, we can construct multisymplectic schemes, including some widely used schemes with an accuracy of any order. The numerical simulation on the collisions of solitons are also proposed to illustrate the efficiency of the multisymplectic schemes.
基金supported by the National Key Research and Development Program of China(No.2023YFC3402900)the National Nature Science of Foundation(No.61875131)+1 种基金Shenzhen Key Laboratory of Photonics and Biophotonics(No.ZDSYS20210623092006020)Shenzhen Science and Technology Innovation Program(No.20231120175730001)。
文摘Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amount of sample requirement and time-consuming sample collection severely hinder its applications.We herein propose a spectral concatenation strategy for residual neural network using nonspecific and specific SERS spectra for the training data augmentation,which is accessible to acquiring larger training dataset with same number of SERS spectra or same size of training dataset with fewer SERS spectra,compared with pure non-specific SERS spectra.With this strategy,the training loss exhibit rapid convergence,and an average accuracy up to 100%in bacteria classifications was achieved with50 SERS spectra for each kind of bacterium;even reduced to 20 SERS spectra per kind of bacterium,classification accuracy is still>95%,demonstrating marked advantage over the results without spectra concatenation.This method can markedly improve the classification accuracy under fewer samples and reduce the data collection workload,and can evidently enhance the performance when used in different machine learning models with high generalization ability.Therefore,this strategy is beneficial for rapid and accurate bacteria classifications with residual neural network.
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805。
文摘Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.
文摘We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .
文摘To improve the performance of the short interleaved serial concatenated convolutional code(SCCC) with low decoding iterative times, the structure of Log MAP algorithm is introduced into the conventional SOVA decoder to improve its performance at short interleaving delay. The combination of Log MAP and SOVA avoids updating the matrices of the maximum path, and also makes a contribution to the requirement of short delay. The simulation results of several SCCCs show that the improved decoder can obtain satisfied performance with short frame interleaver and it is suitable to the high bit rate low delay communication systems.
文摘In this paper, direct sequence spread spectrum multiple access (DS/SSMA) communication system employing serially concatenated trellis coded modulation (TCM) and continuous phase modulation (CPM) over flat Rayleigh fading channel are presented. The performance of this concatenated TCM/CPM DS/SSMA system is exploited by the theoretical analysis and numerical simulations. The results demonstrate that significant improvements in error probability of this DS/SSMA system over the system with single TCM or CPM of different modulation indices can be achieved under the same conditions.
基金supported this project under the Fundamental Research Grant Scheme(FRGS)FRGS/1/2019/ICT02/UKM/02/9 entitled“Convolution Neural Network Enhancement Based on Adaptive Convexity and Regularization Functions for Fake Video Analytics”.This grant was received by Prof.Assis.Dr.S.N.H.Sheikh Abdullah,https://www.ukm.my/spifper/research_news/instrumentfunds.
文摘Text extraction from images using the traditional techniques of image collecting,and pattern recognition using machine learning consume time due to the amount of extracted features from the images.Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results.This study proposes using Dual Maxpooling and concatenating convolution Neural Networks(CNN)layers with the activation functions Relu and the Optimized Leaky Relu(OLRelu).The proposed method works by dividing the word image into slices that contain characters.Then pass them to deep learning layers to extract feature maps and reform the predicted words.Bidirectional Short Memory(BiLSTM)layers extractmore compelling features and link the time sequence fromforward and backward directions during the training phase.The Connectionist Temporal Classification(CTC)function calcifies the training and validation loss rates.In addition to decoding the extracted feature to reform characters again and linking them according to their time sequence.The proposed model performance is evaluated using training and validation loss errors on the Mjsynth and Integrated Argument Mining Tasks(IAM)datasets.The result of IAM was 2.09%for the average loss errors with the proposed dualMaxpooling and OLRelu.In the Mjsynth dataset,the best validation loss rate shrunk to 2.2%by applying concatenating CNN layers,and Relu.
基金supported in part by National Natural Science Foundation of China through grant 61501002in part by Natural Science Project of Ministry of Education of Anhui through grant KJ2015A102+1 种基金in part by Talents Recruitment Program of Anhui Universityin part by the Key Laboratory Project of the Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education of China, Anhui University
文摘This paper studies the decoding performance of low-density parity-check(LDPC)codes in a serial concatenation system with polar codes employing the successive cancellation(SC)decoding.It is known that the absolute incorrect log-likelihood ratio(LLR)values from the SC decoding can be very large.This phenomenon dramatically deteriorates the error correcting performance of the outer LDPC codes.In this paper,the LLR values of polar codes are regulated by a log processing before being sent to the LDPC decoder.Simulation results show that the log processing is an efficient approach with a low optimization complexity compared with the existing procedures to improve the performance of the serial concatenation systems.
基金Supported by NSFC & Microsoft Asia (60372048)China TRAPOYT, NSFC key project (60496316)+2 种基金863 Project (2005AA123910)RFDP (20050701007)MOE Key Project (104171).
文摘A reduced state Soft Input Soft Output (SISO) a posteriori probability algorithm for Seri-ally Concatenated Continuous Phase Modulation (SCCPM) is proposed in this paper. Based on the Reduced State Sequence Detection (RSSD),it has more general form compared with other reduced state SISO algorithms. The proposed algorithm can greatly reduce the state number,thus leads to the computation complexity reduction. It also minimizes the degradation in Euclidean distance with decision feedback in the reduced state trellis. Analysis and simulation results show that the perform-ance degradation is little with proper reduction scheme.
文摘There has been a significant interest of researchers to combine different schemes focused on optimizing energy performance while developing aMAC protocol for Wireless Sensor Networks(WSNs).In this paper,we propose to integrate two cross-layer schemes:dynamic channel polling and packet concatenation using a recent asynchronous MAC protocol“Adaptive&Dynamic Polling MAC”(ADPMAC).ADP-MAC dynamically selects the polling interval distribution based on characterization of incoming traffic patterns using Coefficient of variation(CV).Packet Concatenation(PC)refers to combining the individually generated data packets into a single super packet and sending it at the polling instant.Also,the Block Acknowledgement(BA)scheme has been developed for ADP-MAC to work in conjunction with the packet concatenation.The proposed schemes have been implemented in Tiny-OS for Mica2 platform and Avrora emulator has been used for conducting experiments.Simulation results have revealed that the performance both in terms of energy&packet loss improves when ADP-MAC is used in conjunction with the additional features of PC&BA.Furthermore,the proposed scheme has been compared with a stateof-art packet concatenation primitive PiP(Packet-in-Packet).It has been observed that ADP-MAC supersedes the performance of PiP in terms of PDR(Packet Delivery Ratio)due to better management of synchronization between source and sink.
文摘A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance codes with flexible interleaver size. Coset based MAP soft in/soft out decoding algorithms are presented for the F24 code. Simulation results show that the proposed coding scheme can achieve high coding gain with flexible interleaver length and very low decoding complexity.
文摘The improved three novel schemes of the super forward error correction (super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+ Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore, the simulation results for the RS(255,239) +RS(255,239) code and the RS(255,239) +RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction, moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes, and their signal to noise ratio gains are respectively 2-3 dB more than that of the RS(255,239)code at the bit error rate of 1 × 10^-13. Finally, the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.
基金supported in part by NSFC project (61571058, 61601052)
文摘Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.
文摘Among mammalian phylogenies,those characterized by rapid radiations are particularly problematic.The New World monkeys(NWMs,Platyrrhini)comprise 3 families and 7 subfamilies,which radiated within a relatively short time period.Accordingly,their phylogenetic relationships are still largely disputed.In the present study,56 nuclear non-coding loci,including 33 introns(INs)and 23 intergenic regions(IGs),from 20 NWM individuals representing 18 species were used to investigate phylogenetic relationships among families and subfamilies.Of the 56 loci,43 have not been used in previous NWM phylogenetics.We applied concatenation and coalescence tree-inference methods,and a recently proposed question-specific approach to address NWM phylogeny.Our results indicate incongruence between concatenation and coalescence methods for the IN and IG datasets.However,a consensus was reached with a single tree topology from all analyses of combined INs and IGs as well as all analyses of question-specific loci using both concatenation and coalescence methods,albeit with varying degrees of statistical support.In detail,our results indicated the sister-group relationships between the families Atelidae and Pitheciidae,and between the subfamilies Aotinae and Callithrichinae among Cebidae.Our study provides insights into the disputed phylogenetic relationships among NWM families and subfamilies from the perspective of multiple non-coding loci and various tree-inference approaches.However,the present phylogenetic framework needs further evaluation by adding more independent sequence data and a deeper taxonomic sampling.Overall,our work has important implications for phylogenetic studies dealing with rapid radiations.
基金Supported by the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Species in genus Nannochloropsis,especially N.oceanica and N.gaditana,have been evolving as the model microalgae for both application and theory studies.The position effect of genome integration,the carrying capability limitation of integrative vectors and the instability of non-integrative vectors have hindered Nannochloropsis genetic modification with concatenate genes and extremely long DNA fragments.The molecular tools including genetic transformation,homologous recombination,gene edition,gene stacking and episome vectors for transient gene expression and diverse reporters and selection markers have been rapidly developing in Nannochloropsis species.The construction of animal and plant artificial chromosomes with“top down”strategy has set fine examples for the construction of Nannochloropsis artificial chromosomes(NannoACs).It seems that the methods and materials to set the foundation for constructing NannoACs are at hands.In this review,we outlined the current status of transgenes in Nannochloropsis species,summarized the limitations of both integrative and non-integrative vectors,and proposed a tentative approach to construct NannoACs by doubling and stabilizing the genome first,and then truncating the natural chromosomes.NannoACs once constructed will facilitate transferring the desired traits and concatenate genes into Nannochloropsis genetic backgrounds,thus contributing towards its genetic improvement and synthetic biological studies.
文摘Eight oligonucleotide fragments were designed with the aid of a computer and synthesizedaccording to the amino add sequcnce of human atrial natriuretic factor(ANF).By means of an-nealing and ligation,these fragments were assembled into an overlapping concatenator consisting oftwo ANF genes ligated by TGATG for termination and initiation of translation.Theconcatenator was omserted into plasmid pRC23 and the recobinant DNA was transformed into E.coli strain TAP106.Analysis by restriction enzyme mapping,hybridization and DNA sequenongshowed that the orientation and reading frame of the gene were correct.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61802175,61871120,61872184,and 62071240)the Fundamental Research Funds for the Central Universities,China(Grant No.NZ2020021)。
文摘In most practical quantum mechanical systems,quantum noise due to decoherence is highly biased towards dephasing.The quantum state suffers from phase flip noise much more seriously than from the bit flip noise.In this work,we construct new families of asymmetric quantum concatenated codes(AQCCs)to deal with such biased quantum noise.Our construction is based on a novel concatenation scheme for constructing AQCCs with large asymmetries,in which classical tensor product codes and concatenated codes are utilized to correct phase flip noise and bit flip noise,respectively.We generalize the original concatenation scheme to a more general case for better correcting degenerate errors.Moreover,we focus on constructing nonbinary AQCCs that are highly degenerate.Compared to previous literatures,AQCCs constructed in this paper show much better parameter performance than existed ones.Furthermore,we design the specific encoding circuit of the AQCCs.It is shown that our codes can be encoded more efficiently than standard quantum codes.
文摘In this work,we study the performance of one shot and concatenated deleting machines(DMs).We show that the output state of one shot DMs are mixed inseparable,and do not violate Bell's inequality but can be used as a teleportation channel for all values of the input state parameters.On the other hand,we observe in the concatenation of different DMs that the output states are mixed inseparable and do not violate Bell's inequality,and cannot be used as a teleportation channel.Further,some important attributes such as inseparability,violation of Bell's inequality,and teleportation fidelity of the DMs remain unchanged under the order of concatenation.In this context of a teleportation channel,one shot DMs are useful when compared to concatenated DMs.