As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance th...As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance than the rest of the consensus algorithms,and it does not cause problems such as the concentrated hashing power,resource waste and fork.However,Raft can only be used in a non-byzantine environment with a small network size.In order to enable Raft to be used in a large-scale network with a certain number of byzantine nodes,this paper combines Raft and credit model to propose a Raft blockchain consensus algorithm based on credit model CRaft.In the node credit evaluation phase,RBF-based support vector machine is used as the anomaly detection method,and the node credit evaluation model is constructed.Then the Trust Nodes List(TNL)mechanism is introduced to make the consensus phase in a creditable network environment.Finally,the common node is synchronized to the consensus node to update the blockchain of the entire network.Experiments show that CRaft has better throughput and lower latency than the commonly used consortium blockchain consensus algorithm PBFT(Practical Byzantine Fault Tolerance).展开更多
Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functio...Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functions properly. In order to reach a consensus, it is critical to emphasize the importance of performance and efficiency. The use of the right consensus algorithm will significantly improve the efficiency of a blockchain application. This paper reviewed several types of consensus algorithms used in blockchain and discusses the idea of a new consensus algorithm that can improve the performance of consortium blockchain.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied.The communication between agents is subject to time delays,unknown parameters and nonlinear inputs,but only with the...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied.The communication between agents is subject to time delays,unknown parameters and nonlinear inputs,but only with their states available for measurement.When the communication topology of the system is connected,an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero.Moreover,the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity.Finally,simulation results show the effectiveness of the proposed control algorithm.展开更多
AIM To examine the practice pattern in Kaiser Permanente Southern California(KPSC), i.e., gastroenterology(GI)/surgery referrals and endoscopic ultrasound(EUS), for pancreatic cystic neoplasms(PCNs) after the regionwi...AIM To examine the practice pattern in Kaiser Permanente Southern California(KPSC), i.e., gastroenterology(GI)/surgery referrals and endoscopic ultrasound(EUS), for pancreatic cystic neoplasms(PCNs) after the regionwide dissemination of the PCN management algorithm.METHODS Retrospective review was performed; patients with PCN diagnosis given between April 2012 and April 2015(18 mo before and after the publication of the algorithm) in KPSC(integrated health system with 15 hospitals and 202 medical offices in Southern California) were identified.RESULTS2558(1157 pre-and 1401 post-algorithm) received a new diagnosis of PCN in the study period. There was no difference in the mean cyst size(pre-19.1 mm vs post-18.5 mm, P = 0.119). A smaller percentage of PCNs resulted in EUS after the implementation of the algorithm(pre-45.5% vs post-34.8%, P < 0.001). A smaller proportion of patients were referred for GI(pre-65.2% vs post-53.3%, P < 0.001) and surgery consultations(pre-24.8% vs post-16%, P < 0.001) for PCN after the implementation. There was no significant change in operations for PCNs. Cost of diagnostic care was reduced after the implementation by 24%, 18%, and 36% for EUS, GI, and surgery consultations, respectively, with total cost saving of 24%.CONCLUSION In the current healthcare climate, there is increased need to optimize resource utilization. Dissemination of an algorithm for PCN management in an integrated health system resulted in fewer EUS and GI/surgery referrals, likely by aiding the physicians ordering imaging studies in the decision making for the management of PCNs. This translated to cost saving of 24%, 18%, and 36% for EUS, GI, and surgical consultations, respectively, with total diagnostic cost saving of 24%.展开更多
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this...Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.展开更多
Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain nee...Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain need rules to limit write permissions.Alliance chain can provide security management functions,using these functions to meet the management between the members,certification,authorization,monitoring and auditing.This article mainly analyzes some requirements realization which applies to the alliance chain,and introduces a new consensus algorithm,generalized Legendre sequence(GLS)consensus algorithm,for alliance chain.GLS algorithms inherit the recognition and verification efficiency of binary sequence ciphers in computer communication and can solve a large number of nodes verification of key distribution issues.In the alliance chain,GLS consensus algorithm can complete node address hiding,automatic task sorting,task automatic grouping,task node scope confirmation,task address binding and stamp timestamp.Moreover,the GLS consensus algorithm increases the difficulty of network malicious attack.展开更多
Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associa...Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associated with subgraph mining in today’s on-demand system.To address this downside,our proposed work introduces a Blockchain-based Consensus algorithm for Authenticated query search in the Large-Scale Dynamic Graphs(BCCA-LSDG).The two-fold process is handled in the proposed BCCA-LSDG:graph indexing and authenticated query search(query processing).A blockchain-based reputation system is meant to maintain the trust blockchain and cloud server of the proposed architecture.To resolve the issues and provide safe big data transmission,the proposed technique also combines blockchain with a consensus algorithm architecture.Security of the big data is ensured by dividing the BC network into distinct networks,each with a restricted number of allowed entities,data kept in the cloud gate server,and data analysis in the blockchain.The consensus algorithm is crucial for maintaining the speed,performance and security of the blockchain.Then Dual Similarity based MapReduce helps in mapping and reducing the relevant subgraphs with the use of optimal feature sets.Finally,the graph index refinement process is undertaken to improve the query results.Concerning query error,fuzzy logic is used to refine the index of the graph dynamically.The proposed technique outperforms advanced methodologies in both blockchain and non-blockchain systems,and the combination of blockchain and subgraph provides a secure communication platform,according to the findings.展开更多
The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to ...The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to support massive network nodes, the common participation over all nodes in the consensus mechanism would lead to increased communication complexity, and the arbitrary selection of master nodes would also lead to inefficient consensus. This paper offered a PBFT consensus method (Role Division-based Practical Byzantine Fault Tolerance, RD-PBFT) to address the above problems based on node role division. First, the nodes in the system voted with each other to divide the high reputation group and low reputation group, and determined the starting reputation value of the nodes. Then, the mobile node in the group was divided into roles according to the high reputation value, and a total of three roles were divided into consensus node, backup node, and supervisory node to reduce the number of nodes involved in the consensus process and reduced the complexity of communication. In addition, an adaptive method was used to select the master nodes in the consensus process, and an integer value was introduced to ensure the unpredictability and equality of the master node selection. Experimentally, it was verified that the algorithm has lower communication complexity and better decentralization characteristics compared with the PBFT consensus algorithm, which improved the efficiency of consensus.展开更多
Dear Editor,This letter studies a real-world issue in leader-follower multi-agent systems(MASs)named open topology,which permits the variations of agent set and network connections.Specially,a novel transition process...Dear Editor,This letter studies a real-world issue in leader-follower multi-agent systems(MASs)named open topology,which permits the variations of agent set and network connections.Specially,a novel transition process is developed to explain how the involved variation of network scale affects the dynamic behavior of the MASs.From a resource limited perspective,the distributed saturated impulsive control is then designed,under which some sufficient criteria are integrated into local quasi-consensus performance.We also provide a combined optimization algorithm for all agents to make the estimated domain of initial errors closer to the real one,thereby resulting in less conservativeness.Finally,a numerical example validates our results.展开更多
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting...Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.展开更多
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all ag...This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.展开更多
Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community struc...Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.展开更多
We deal with a consensus control problem for a group of third order agents which are networked by digraphs.Assuming that the control input of each agent is constructed based on weighted difference between its states a...We deal with a consensus control problem for a group of third order agents which are networked by digraphs.Assuming that the control input of each agent is constructed based on weighted difference between its states and those of its neighbor agents, we aim to propose an algorithm on computing the weighting coefficients in the control input. The problem is reduced to designing Hurwitz polynomials with real or complex coefficients. We show that by using Hurwitz polynomials with complex coefficients, a necessary and sufficient condition can be obtained for designing the consensus algorithm. Since the condition is both necessary and sufficient, we provide a kind of parametrization for all the weighting coefficients achieving consensus. Moreover, the condition is a natural extension to second order consensus, and is reasonable and practical due to its comparatively decreased computation burden. The result is also extended to the case where communication delay exists in the control input.展开更多
A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency r...A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.展开更多
基金Supported by the National Natural Science Foundation of China(61672297)。
文摘As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance than the rest of the consensus algorithms,and it does not cause problems such as the concentrated hashing power,resource waste and fork.However,Raft can only be used in a non-byzantine environment with a small network size.In order to enable Raft to be used in a large-scale network with a certain number of byzantine nodes,this paper combines Raft and credit model to propose a Raft blockchain consensus algorithm based on credit model CRaft.In the node credit evaluation phase,RBF-based support vector machine is used as the anomaly detection method,and the node credit evaluation model is constructed.Then the Trust Nodes List(TNL)mechanism is introduced to make the consensus phase in a creditable network environment.Finally,the common node is synchronized to the consensus node to update the blockchain of the entire network.Experiments show that CRaft has better throughput and lower latency than the commonly used consortium blockchain consensus algorithm PBFT(Practical Byzantine Fault Tolerance).
文摘Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functions properly. In order to reach a consensus, it is critical to emphasize the importance of performance and efficiency. The use of the right consensus algorithm will significantly improve the efficiency of a blockchain application. This paper reviewed several types of consensus algorithms used in blockchain and discusses the idea of a new consensus algorithm that can improve the performance of consortium blockchain.
基金supported by the National Natural Sciences Foundation of China(60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied.The communication between agents is subject to time delays,unknown parameters and nonlinear inputs,but only with their states available for measurement.When the communication topology of the system is connected,an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero.Moreover,the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity.Finally,simulation results show the effectiveness of the proposed control algorithm.
文摘AIM To examine the practice pattern in Kaiser Permanente Southern California(KPSC), i.e., gastroenterology(GI)/surgery referrals and endoscopic ultrasound(EUS), for pancreatic cystic neoplasms(PCNs) after the regionwide dissemination of the PCN management algorithm.METHODS Retrospective review was performed; patients with PCN diagnosis given between April 2012 and April 2015(18 mo before and after the publication of the algorithm) in KPSC(integrated health system with 15 hospitals and 202 medical offices in Southern California) were identified.RESULTS2558(1157 pre-and 1401 post-algorithm) received a new diagnosis of PCN in the study period. There was no difference in the mean cyst size(pre-19.1 mm vs post-18.5 mm, P = 0.119). A smaller percentage of PCNs resulted in EUS after the implementation of the algorithm(pre-45.5% vs post-34.8%, P < 0.001). A smaller proportion of patients were referred for GI(pre-65.2% vs post-53.3%, P < 0.001) and surgery consultations(pre-24.8% vs post-16%, P < 0.001) for PCN after the implementation. There was no significant change in operations for PCNs. Cost of diagnostic care was reduced after the implementation by 24%, 18%, and 36% for EUS, GI, and surgery consultations, respectively, with total cost saving of 24%.CONCLUSION In the current healthcare climate, there is increased need to optimize resource utilization. Dissemination of an algorithm for PCN management in an integrated health system resulted in fewer EUS and GI/surgery referrals, likely by aiding the physicians ordering imaging studies in the decision making for the management of PCNs. This translated to cost saving of 24%, 18%, and 36% for EUS, GI, and surgical consultations, respectively, with total diagnostic cost saving of 24%.
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
文摘Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.
基金We gratefully acknowledge anonymous reviewers who read drafts and made many helpful suggestions.This work is supported by the National Key Research and Development Program No.2018YFC0807002.
文摘Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain need rules to limit write permissions.Alliance chain can provide security management functions,using these functions to meet the management between the members,certification,authorization,monitoring and auditing.This article mainly analyzes some requirements realization which applies to the alliance chain,and introduces a new consensus algorithm,generalized Legendre sequence(GLS)consensus algorithm,for alliance chain.GLS algorithms inherit the recognition and verification efficiency of binary sequence ciphers in computer communication and can solve a large number of nodes verification of key distribution issues.In the alliance chain,GLS consensus algorithm can complete node address hiding,automatic task sorting,task automatic grouping,task node scope confirmation,task address binding and stamp timestamp.Moreover,the GLS consensus algorithm increases the difficulty of network malicious attack.
文摘Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associated with subgraph mining in today’s on-demand system.To address this downside,our proposed work introduces a Blockchain-based Consensus algorithm for Authenticated query search in the Large-Scale Dynamic Graphs(BCCA-LSDG).The two-fold process is handled in the proposed BCCA-LSDG:graph indexing and authenticated query search(query processing).A blockchain-based reputation system is meant to maintain the trust blockchain and cloud server of the proposed architecture.To resolve the issues and provide safe big data transmission,the proposed technique also combines blockchain with a consensus algorithm architecture.Security of the big data is ensured by dividing the BC network into distinct networks,each with a restricted number of allowed entities,data kept in the cloud gate server,and data analysis in the blockchain.The consensus algorithm is crucial for maintaining the speed,performance and security of the blockchain.Then Dual Similarity based MapReduce helps in mapping and reducing the relevant subgraphs with the use of optimal feature sets.Finally,the graph index refinement process is undertaken to improve the query results.Concerning query error,fuzzy logic is used to refine the index of the graph dynamically.The proposed technique outperforms advanced methodologies in both blockchain and non-blockchain systems,and the combination of blockchain and subgraph provides a secure communication platform,according to the findings.
文摘The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to support massive network nodes, the common participation over all nodes in the consensus mechanism would lead to increased communication complexity, and the arbitrary selection of master nodes would also lead to inefficient consensus. This paper offered a PBFT consensus method (Role Division-based Practical Byzantine Fault Tolerance, RD-PBFT) to address the above problems based on node role division. First, the nodes in the system voted with each other to divide the high reputation group and low reputation group, and determined the starting reputation value of the nodes. Then, the mobile node in the group was divided into roles according to the high reputation value, and a total of three roles were divided into consensus node, backup node, and supervisory node to reduce the number of nodes involved in the consensus process and reduced the complexity of communication. In addition, an adaptive method was used to select the master nodes in the consensus process, and an integer value was introduced to ensure the unpredictability and equality of the master node selection. Experimentally, it was verified that the algorithm has lower communication complexity and better decentralization characteristics compared with the PBFT consensus algorithm, which improved the efficiency of consensus.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20240009)the National Natural Science Foundation of China(62373105,62373262)Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002).
文摘Dear Editor,This letter studies a real-world issue in leader-follower multi-agent systems(MASs)named open topology,which permits the variations of agent set and network connections.Specially,a novel transition process is developed to explain how the involved variation of network scale affects the dynamic behavior of the MASs.From a resource limited perspective,the distributed saturated impulsive control is then designed,under which some sufficient criteria are integrated into local quasi-consensus performance.We also provide a combined optimization algorithm for all agents to make the estimated domain of initial errors closer to the real one,thereby resulting in less conservativeness.Finally,a numerical example validates our results.
基金National Key Research and Development Program of China,No.2023YFC3006704National Natural Science Foundation of China,No.42171047CAS-CSIRO Partnership Joint Project of 2024,No.177GJHZ2023097MI。
文摘Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach.
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金supported by Deanship of Scientific research(CDSR)at KFUPM(RG-1316-1)
文摘This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.
基金supported by the National Natural Science Foundation of China(Grant No.61370073)the China Scholarship Council,China(Grant No.201306070037)
文摘Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.
基金supported by Japan Ministry of Education,Sciences and Culture(C21560471)the National Natural Science Foundation of China(61603268)+1 种基金the Research Project Supported by Shanxi Scholarship Council of China(2015-044)the Fundamental Research Project of Shanxi Province(2015021085)
文摘We deal with a consensus control problem for a group of third order agents which are networked by digraphs.Assuming that the control input of each agent is constructed based on weighted difference between its states and those of its neighbor agents, we aim to propose an algorithm on computing the weighting coefficients in the control input. The problem is reduced to designing Hurwitz polynomials with real or complex coefficients. We show that by using Hurwitz polynomials with complex coefficients, a necessary and sufficient condition can be obtained for designing the consensus algorithm. Since the condition is both necessary and sufficient, we provide a kind of parametrization for all the weighting coefficients achieving consensus. Moreover, the condition is a natural extension to second order consensus, and is reasonable and practical due to its comparatively decreased computation burden. The result is also extended to the case where communication delay exists in the control input.
文摘A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.