期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient Task Scheduling for Many Task Computing with Resource Attribute Selection 被引量:3
1
作者 ZHAO Yong CHEN Liang LI Youfu TIAN Wenhong 《China Communications》 SCIE CSCD 2014年第12期125-140,共16页
Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,... Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications. 展开更多
关键词 task scheduling resource attribute selection many task computing resource utilization work-stealing
在线阅读 下载PDF
Resource Load Prediction of Internet of Vehicles Mobile Cloud Computing
2
作者 Wenbin Bi Fang Yu +1 位作者 Ning Cao Russell Higgs 《Computers, Materials & Continua》 SCIE EI 2022年第10期165-180,共16页
Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study... Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study designs a load prediction method by using the resource scheduling model for mobile cloud computing of IoV.Firstly,a chaotic analysis algorithm is implemented to process the load-time series,while some learning samples of load prediction are constructed.Secondly,a support vector machine(SVM)is used to establish a load prediction model,and an improved artificial bee colony(IABC)function is designed to enhance the learning ability of the SVM.Finally,a CloudSim simulation platform is created to select the perminute CPU load history data in the mobile cloud computing system,which is composed of 50 vehicles as the data set;and a comparison experiment is conducted by using a grey model,a back propagation neural network,a radial basis function(RBF)neural network and a RBF kernel function of SVM.As shown in the experimental results,the prediction accuracy of the method proposed in this study is significantly higher than other models,with a significantly reduced real-time prediction error for resource loading in mobile cloud environments.Compared with single-prediction models,the prediction method proposed can build up multidimensional time series in capturing complex load time series,fit and describe the load change trends,approximate the load time variability more precisely,and deliver strong generalization ability to load prediction models for mobile cloud computing resources. 展开更多
关键词 Internet of Vehicles mobile cloud computing resource load predicting multi distributed resource computing scheduling chaos analysis algorithm improved artificial bee colony function
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部