Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effecti...Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effectively.Soft Computing(SC)methods have gained popularity in engineering disciplines such as mining and civil engineering due to computer hardware and machine learning advancements.Unlike traditional hard computing approaches,SC models use soft values and fuzzy sets to navigate uncertain environments.This study focuses on the application of SC methods to predict backbreak,a common issue in blasting operations within mining and civil projects.Backbreak,which refers to the unintended fracturing of rock beyond the desired blast perimeter,can significantly impact project timelines and costs.This study aims to explore how SC methods can be effectively employed to anticipate and mitigate the undesirable consequences of blasting operations,specifically focusing on backbreak prediction.The research explores the complexities of backbreak prediction and highlights the potential benefits of utilizing SC methods to address this challenging issue in geo-engineering projects.展开更多
Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks....Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks. The first one is designed on the path-turn incidencerelationship, and it is similar to the computational procedure of link flows. It applies to thetraffic assignment algorithms that can provide detailed path structures. The second utilizes thelink-turn incidence relationship and the conservation of flow on links, a law deriving from thisrelationship. It is actually an improved version of Dial's logit assignment algorithm. The proposedapproaches can avoid the shortcomings both of the estimation methods, e. g. Furness's model andFrator's model, and of the network-expanding method in precision, stability and computation scale.Finally, they are validated by numerical examples.展开更多
A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-unifor...A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model.展开更多
Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the tra...Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy.展开更多
Three-dimensional(3 D)reconstruction of icosahedral viruses has played a crucial role in the development of cryoelectron microscopy single-particle reconstruction,with many cryo-electron microscopy techniques first es...Three-dimensional(3 D)reconstruction of icosahedral viruses has played a crucial role in the development of cryoelectron microscopy single-particle reconstruction,with many cryo-electron microscopy techniques first established for structural studies of icosahedral viruses,owing to their high symmetry and large mass.This review summarizes the computational methods for icosahedral and symmetry-mismatch reconstruction of viruses,as well as the likely challenges and bottlenecks in virus reconstruction,such as symmetry mismatch reconstruction,contrast transformation function(CTF)correction,and particle distortion.展开更多
Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calc...Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of t...The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.展开更多
Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng...Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.展开更多
Currently,the oil-surface thermometer remains a crucial monitoring device in substations.However,challenges such as uneven scale distribution,inadequate model accuracy,and low reading precision persist in handling rea...Currently,the oil-surface thermometer remains a crucial monitoring device in substations.However,challenges such as uneven scale distribution,inadequate model accuracy,and low reading precision persist in handling readings from various types of oilsurface thermometers.This paper presents a high-precision recognition method based on neural networks for accurately reading various types of oil-surface thermometers.The proposed recognition method mainly comprises the YOLOv5 convolutional network,the attention U2-Net semantic segmentation network,and enhanced computational methods.This detection method demonstrates ultra-high precision and can be applied to different types of oilsurface thermometers.Compared to existing methods,the proposed detection method exhibits outstanding accuracy and effectiveness.A comprehensive set of tests was performed to assess the viability and reliability of the approach.Findings reveal that the maximum error margin in its measurements remains below 0.13%.展开更多
Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,comp...Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.展开更多
Underpinned by the ultrahigh-core rockfill dam at the Nuozhadu Hydropower Station,comprehensive studies and engineering practices have been conducted to address several critical challenges:coordination of seepage defo...Underpinned by the ultrahigh-core rockfill dam at the Nuozhadu Hydropower Station,comprehensive studies and engineering practices have been conducted to address several critical challenges:coordination of seepage deformation in dam materials,prevention and control of high-water-pressure seepage failure,static and dynamic deformation control,and construction quality monitoring.Advanced technologies have been developed for modifying impermeable soil materials and utilizing soft rocks.Constitutive models and high-performance fine computational methods for dam materials have been improved,along with innovative seismic safety measures.Additionally,a“Digital Dam”and an information system for monitoring the construction quality were implemented.These efforts ensured the successful construction of the Nuozhadu Dam,making it the tallest dam in China and the third tallest dam in the world upon completion.This achievement increased the height of core dams in China by 100 m and established a design and safety evaluation framework for ultrahigh-core rockfill dams exceeding 300 m in height.Furthermore,the current safety monitoring results indicate that the Nuozhadu Dam is safe and controllable.展开更多
In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This s...In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.展开更多
This study investigates the transmission dynamics of conjunctivitis using stochastic delay differential equations(SDDEs).A delayed stochastic model is formulated by dividing the population into five distinct compartme...This study investigates the transmission dynamics of conjunctivitis using stochastic delay differential equations(SDDEs).A delayed stochastic model is formulated by dividing the population into five distinct compartments:susceptible,exposed,infected,environmental irritants,and recovered individuals.The model undergoes thorough analytical examination,addressing key dynamical properties including positivity,boundedness,existence,and uniqueness of solutions.Local and global stability around the equilibrium points is studied with respect to the basic reproduction number.The existence of a unique global positive solution for the stochastic delayed model is established.In addition,a stochastic nonstandard finite difference scheme is developed,which is shown to be dynamically consistent and convergent toward the equilibrium states.The scheme preserves the essential qualitative features of the model and demonstrates improved performance when compared to existing numerical methods.Finally,the impact of time delays and stochastic fluctuations on the susceptible and infected populations is analyzed.展开更多
In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6...In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities.展开更多
Active tectonic movements and geological disasters frequently occur in the upper reaches of the Jinsha River,increasing the likelihood of landslides obstructing the river.Taking the ancient Rongcharong landslide dam f...Active tectonic movements and geological disasters frequently occur in the upper reaches of the Jinsha River,increasing the likelihood of landslides obstructing the river.Taking the ancient Rongcharong landslide dam failure events in the Suwalong reach as an example,this paper first analyzes the accuracy and applicability of the commonly used methods in calculating the peak flow of the dam failure,such as the empirical formula,the numerical method based on the physical mechanism,and the computational fluid dynamics(CFD)method.Then,the peak flood flow of the Rongcharong-dammed lake when it overflows the dam is determined to be 28393-64272 m~3/s.At the same time,the failure process of landslide dam due to flood erosion was elucidated using the CFD method,which can be divided into three stages:gradual erosion in the initial stage,rapid development in the middle stage,and gradual expansion in the final stage.Finally,the factors that affect the peak flow of floods are analyzed,and suggestions for emergency treatment of landslide dams are put forward.The findings of this research can serve as a valuable reference for disaster prevention and mitigation strategies to adapt to the increasing frequency of landslide-induced river blockages.展开更多
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer tra...Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer trajectories. In order to address the usually slow computational time for the determination of the landing footprint of a space-to-ground vehicle under finite thrust, this work proposes a method that uses polynomial equations to describe the boundaries of the landing footprint and uses back propagation(BP) neural networks to quickly determine the landing footprint of the space-to-ground vehicle. First, given orbital parameters and a manoeuvre moment, the solution model of the landing footprint of a space-to-ground vehicle under finite thrust is established. Second, given arbitrary orbital parameters and an arbitrary manoeuvre moment, a fast computational model for the landing footprint of a space-to-ground vehicle based on BP neural networks is provided.Finally, the simulation results demonstrate that under the premise of ensuring accuracy, the proposed method can quickly determine the landing footprint of a space-to-ground vehicle with arbitrary orbital parameters and arbitrary manoeuvre moments. The proposed fast computational method for determining a landing footprint lays a foundation for the parking-orbit configuration and supports the design of real-time transfer trajectories.展开更多
Novel coronavirus disease 2019(COVID-19)is an ongoing health emergency.Several studies are related to COVID-19.However,its molecular mechanism remains unclear.The rapid publication of COVID-19 provides a new way to el...Novel coronavirus disease 2019(COVID-19)is an ongoing health emergency.Several studies are related to COVID-19.However,its molecular mechanism remains unclear.The rapid publication of COVID-19 provides a new way to elucidate its mechanism through computational methods.This paper proposes a prediction method for mining genotype information related to COVID-19 from the perspective of molecular mechanisms based on machine learning.The method obtains seed genes based on prior knowledge.Candidate genes are mined from biomedical literature.The candidate genes are scored by machine learning based on the similarities measured between the seed and candidate genes.Furthermore,the results of the scores are used to perform functional enrichment analyses,including KEGG,interaction network,and Gene Ontology,for exploring the molecular mechanism of COVID-19.Experimental results show that the method is promising for mining genotype information to explore the molecular mechanism related to COVID-19.展开更多
文摘Geo-engineering problems are known for their complexity and high uncertainty levels,requiring precise defini-tions,past experiences,logical reasoning,mathematical analysis,and practical insight to address them effectively.Soft Computing(SC)methods have gained popularity in engineering disciplines such as mining and civil engineering due to computer hardware and machine learning advancements.Unlike traditional hard computing approaches,SC models use soft values and fuzzy sets to navigate uncertain environments.This study focuses on the application of SC methods to predict backbreak,a common issue in blasting operations within mining and civil projects.Backbreak,which refers to the unintended fracturing of rock beyond the desired blast perimeter,can significantly impact project timelines and costs.This study aims to explore how SC methods can be effectively employed to anticipate and mitigate the undesirable consequences of blasting operations,specifically focusing on backbreak prediction.The research explores the complexities of backbreak prediction and highlights the potential benefits of utilizing SC methods to address this challenging issue in geo-engineering projects.
文摘Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks. The first one is designed on the path-turn incidencerelationship, and it is similar to the computational procedure of link flows. It applies to thetraffic assignment algorithms that can provide detailed path structures. The second utilizes thelink-turn incidence relationship and the conservation of flow on links, a law deriving from thisrelationship. It is actually an improved version of Dial's logit assignment algorithm. The proposedapproaches can avoid the shortcomings both of the estimation methods, e. g. Furness's model andFrator's model, and of the network-expanding method in precision, stability and computation scale.Finally, they are validated by numerical examples.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51075311)
文摘A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model.
基金supported by the National Natural Science Foundation of China (Grant No. 60872159)
文摘Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0501100)the National Natural Science Foundation of China(Grant Nos.91530321,31570742,and 31570727)Science and Technology Planning Project of Hunan Province,China(Grant No.2017RS3033)
文摘Three-dimensional(3 D)reconstruction of icosahedral viruses has played a crucial role in the development of cryoelectron microscopy single-particle reconstruction,with many cryo-electron microscopy techniques first established for structural studies of icosahedral viruses,owing to their high symmetry and large mass.This review summarizes the computational methods for icosahedral and symmetry-mismatch reconstruction of viruses,as well as the likely challenges and bottlenecks in virus reconstruction,such as symmetry mismatch reconstruction,contrast transformation function(CTF)correction,and particle distortion.
基金supported by Natural Science Foundation of Jilin Province(20210101468JC)Chinese Academy of Sciences and Local Government Cooperation Project(2023SYHZ0027,23SH04)National Natural Science Foundation of China(12273063&12203078)。
文摘Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
文摘The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under Grant Number RGP2/302/45supported by the Deanship of Scientific Research,Vice Presidency forGraduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant Number A426).
文摘Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.
基金funded by the Zhejiang Provincial Administration for Market Regulation's Early Career Development Program,grant number CY2023323.
文摘Currently,the oil-surface thermometer remains a crucial monitoring device in substations.However,challenges such as uneven scale distribution,inadequate model accuracy,and low reading precision persist in handling readings from various types of oilsurface thermometers.This paper presents a high-precision recognition method based on neural networks for accurately reading various types of oil-surface thermometers.The proposed recognition method mainly comprises the YOLOv5 convolutional network,the attention U2-Net semantic segmentation network,and enhanced computational methods.This detection method demonstrates ultra-high precision and can be applied to different types of oilsurface thermometers.Compared to existing methods,the proposed detection method exhibits outstanding accuracy and effectiveness.A comprehensive set of tests was performed to assess the viability and reliability of the approach.Findings reveal that the maximum error margin in its measurements remains below 0.13%.
基金supported by High-end Foreign Expert Introduction program (No.G20190022002)Chongqing Construction Science and Technology Plan Project (2019-0045)
文摘Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available.
基金National Natural Science Foundation of China,Grant/Award Number:52309153Key Science and Technology Projects of China Power Construction Group,Grant/Award Numbers:DJ-ZDXM-2022-01,DJ-ZDXM-12025-45。
文摘Underpinned by the ultrahigh-core rockfill dam at the Nuozhadu Hydropower Station,comprehensive studies and engineering practices have been conducted to address several critical challenges:coordination of seepage deformation in dam materials,prevention and control of high-water-pressure seepage failure,static and dynamic deformation control,and construction quality monitoring.Advanced technologies have been developed for modifying impermeable soil materials and utilizing soft rocks.Constitutive models and high-performance fine computational methods for dam materials have been improved,along with innovative seismic safety measures.Additionally,a“Digital Dam”and an information system for monitoring the construction quality were implemented.These efforts ensured the successful construction of the Nuozhadu Dam,making it the tallest dam in China and the third tallest dam in the world upon completion.This achievement increased the height of core dams in China by 100 m and established a design and safety evaluation framework for ultrahigh-core rockfill dams exceeding 300 m in height.Furthermore,the current safety monitoring results indicate that the Nuozhadu Dam is safe and controllable.
文摘In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R899)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiasupported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(KFU252831)。
文摘This study investigates the transmission dynamics of conjunctivitis using stochastic delay differential equations(SDDEs).A delayed stochastic model is formulated by dividing the population into five distinct compartments:susceptible,exposed,infected,environmental irritants,and recovered individuals.The model undergoes thorough analytical examination,addressing key dynamical properties including positivity,boundedness,existence,and uniqueness of solutions.Local and global stability around the equilibrium points is studied with respect to the basic reproduction number.The existence of a unique global positive solution for the stochastic delayed model is established.In addition,a stochastic nonstandard finite difference scheme is developed,which is shown to be dynamically consistent and convergent toward the equilibrium states.The scheme preserves the essential qualitative features of the model and demonstrates improved performance when compared to existing numerical methods.Finally,the impact of time delays and stochastic fluctuations on the susceptible and infected populations is analyzed.
基金supported by the Fundacao para a Ciencia e Tecnologia,FCT,under the project https://doi.org/10.54499/UIDB/04674/2020(accessed on 1 January 2025).
文摘In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0904)the National Natural Science Foundation of China(No.42307247)。
文摘Active tectonic movements and geological disasters frequently occur in the upper reaches of the Jinsha River,increasing the likelihood of landslides obstructing the river.Taking the ancient Rongcharong landslide dam failure events in the Suwalong reach as an example,this paper first analyzes the accuracy and applicability of the commonly used methods in calculating the peak flow of the dam failure,such as the empirical formula,the numerical method based on the physical mechanism,and the computational fluid dynamics(CFD)method.Then,the peak flood flow of the Rongcharong-dammed lake when it overflows the dam is determined to be 28393-64272 m~3/s.At the same time,the failure process of landslide dam due to flood erosion was elucidated using the CFD method,which can be divided into three stages:gradual erosion in the initial stage,rapid development in the middle stage,and gradual expansion in the final stage.Finally,the factors that affect the peak flow of floods are analyzed,and suggestions for emergency treatment of landslide dams are put forward.The findings of this research can serve as a valuable reference for disaster prevention and mitigation strategies to adapt to the increasing frequency of landslide-induced river blockages.
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.
基金supported by the National Natural Science Foundation of China (61603398)。
文摘Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer trajectories. In order to address the usually slow computational time for the determination of the landing footprint of a space-to-ground vehicle under finite thrust, this work proposes a method that uses polynomial equations to describe the boundaries of the landing footprint and uses back propagation(BP) neural networks to quickly determine the landing footprint of the space-to-ground vehicle. First, given orbital parameters and a manoeuvre moment, the solution model of the landing footprint of a space-to-ground vehicle under finite thrust is established. Second, given arbitrary orbital parameters and an arbitrary manoeuvre moment, a fast computational model for the landing footprint of a space-to-ground vehicle based on BP neural networks is provided.Finally, the simulation results demonstrate that under the premise of ensuring accuracy, the proposed method can quickly determine the landing footprint of a space-to-ground vehicle with arbitrary orbital parameters and arbitrary manoeuvre moments. The proposed fast computational method for determining a landing footprint lays a foundation for the parking-orbit configuration and supports the design of real-time transfer trajectories.
基金This research is supported by the National Natural Science Foundation of China(Grant Nos.61502243,61802193)Natural Science Foundation of Jiangsu Province(BK20170934)+4 种基金Zhejiang Engineering Research Center of Intelligent Medicine under 2016E10011China Postdoctoral Science Foundation(2018M632349)NUPTSF(NY217136)Foundation of Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province(SHEL221-001)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province in China(16KJD520003).
文摘Novel coronavirus disease 2019(COVID-19)is an ongoing health emergency.Several studies are related to COVID-19.However,its molecular mechanism remains unclear.The rapid publication of COVID-19 provides a new way to elucidate its mechanism through computational methods.This paper proposes a prediction method for mining genotype information related to COVID-19 from the perspective of molecular mechanisms based on machine learning.The method obtains seed genes based on prior knowledge.Candidate genes are mined from biomedical literature.The candidate genes are scored by machine learning based on the similarities measured between the seed and candidate genes.Furthermore,the results of the scores are used to perform functional enrichment analyses,including KEGG,interaction network,and Gene Ontology,for exploring the molecular mechanism of COVID-19.Experimental results show that the method is promising for mining genotype information to explore the molecular mechanism related to COVID-19.