期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Design of Latency-Aware IoT Modules in Heterogeneous Fog-Cloud Computing Networks 被引量:2
1
作者 Syed Rizwan Hassan Ishtiaq Ahmad +3 位作者 Jamel Nebhen Ateeq Ur Rehman Muhammad Shafiq Jin-Ghoo Choi 《Computers, Materials & Continua》 SCIE EI 2022年第3期6057-6072,共16页
The modern paradigm of the Internet of Things(IoT)has led to a significant increase in demand for latency-sensitive applications in Fog-based cloud computing.However,such applications cannot meet strict quality of ser... The modern paradigm of the Internet of Things(IoT)has led to a significant increase in demand for latency-sensitive applications in Fog-based cloud computing.However,such applications cannot meet strict quality of service(QoS)requirements.The large-scale deployment of IoT requires more effective use of network infrastructure to ensure QoS when processing big data.Generally,cloud-centric IoT application deployment involves different modules running on terminal devices and cloud servers.Fog devices with different computing capabilities must process the data generated by the end device,so deploying latency-sensitive applications in a heterogeneous fog computing environment is a difficult task.In addition,when there is an inconsistent connection delay between the fog and the terminal device,the deployment of such applications becomes more complicated.In this article,we propose an algorithm that can effectively place application modules on network nodes while considering connection delay,processing power,and sensing data volume.Compared with traditional cloud computing deployment,we conducted simulations in iFogSim to confirm the effectiveness of the algorithm.The simulation results verify the effectiveness of the proposed algorithm in terms of end-to-end delay and network consumption.Therein,latency and execution time is insensitive to the number of sensors. 展开更多
关键词 IOT fog-cloud computing architecture module placement latency sensitive application resource aware placement
在线阅读 下载PDF
Compute Unified Device Architecture Implementation of Euler/Navier-Stokes Solver on Graphics Processing Unit Desktop Platform for 2-D Compressible Flows
2
作者 Zhang Jiale Chen Hongquan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期536-545,共10页
Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/N... Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially. 展开更多
关键词 graphics processing unit(GPU) GPU parallel computing compute unified device architecture(CUDA)Fortran finite volume method(FVM) acceleration
在线阅读 下载PDF
SOLVERS FOR SYSTEMS OF LARGE SPARSE LINEAR AND NONLINEAR EQUATIONS BASED ON MULTI-GPUS 被引量:3
3
作者 刘沙 钟诚文 陈效鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期300-308,共9页
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend... Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need. 展开更多
关键词 general purpose graphic process unit(GPGPU) compute unified device architecture(CUDA) system of linear equations system of nonlinear equations Inexact Newton method bi-conjugate gradient stable(Bi-CGstab)method
在线阅读 下载PDF
High-performance solutions of geographically weighted regression in R 被引量:2
4
作者 Binbin Lu Yigong Hu +4 位作者 Daisuke Murakami Chris Brunsdon Alexis Comber Martin Charlton Paul Harris 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第4期536-549,共14页
As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalen... As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalent in today’s digital world.In this study,we propose two high-performance R solutions for GWR via Multi-core Parallel(MP)and Compute Unified Device Architecture(CUDA)techniques,respectively GWR-MP and GWR-CUDA.We compared GWR-MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models(GWmodel),Multi-scale GWR(MGWR)and Fast GWR(FastGWR).Results showed that all five solutions perform differently across varying sample sizes,with no single solution a clear winner in terms of computational efficiency.Specifically,solutions given in GWmodel and MGWR provided acceptable computational costs for GWR studies with a relatively small sample size.For a large sample size,GWR-MP and FastGWR provided coherent solutions on a Personal Computer(PC)with a common multi-core configuration,GWR-MP provided more efficient computing capacity for each core or thread than FastGWR.For cases when the sample size was very large,and for these cases only,GWR-CUDA provided the most efficient solution,but should note its I/O cost with small samples.In summary,GWR-MP and GWR-CUDA provided complementary high-performance R solutions to existing ones,where for certain data-rich GWR studies,they should be preferred. 展开更多
关键词 Non-stationarity big data parallel computing Compute Unified Device architecture(CUDA) Geographically Weighted models(GWmodel)
原文传递
A GPU-Accelerated Discontinuous Galerkin Method for Solving Two-Dimensional Laminar Flows 被引量:2
5
作者 GAO Huanqin CHEN Hongquan +2 位作者 ZHANG Jiale XU Shengguan GAO Yukun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期450-466,共17页
A graphics processing unit(GPU)-accelerated discontinuous Galerkin(DG)method is presented for solving two-dimensional laminar flows.The DG method is ported from central processing unit to GPU in a way of achieving GPU... A graphics processing unit(GPU)-accelerated discontinuous Galerkin(DG)method is presented for solving two-dimensional laminar flows.The DG method is ported from central processing unit to GPU in a way of achieving GPU speedup through programming under the compute unified device architecture(CUDA)model.The CUDA kernel subroutines are designed to meet with the requirement of high order computing of DG method.The corresponding data structures are constructed in component-wised manners and the thread hierarchy is manipulated in cell-wised or edge-wised manners associated with related integrals involved in solving laminar Navier-Stokes equations,in which the inviscid and viscous flux terms are computed by the local lax-Friedrichs scheme and the second scheme of Bassi&Rebay,respectively.A strong stability preserving Runge-Kutta scheme is then used for time marching of numerical solutions.The resulting GPU-accelerated DG method is first validated by the traditional Couette flow problems with different mesh sizes associated with different orders of approximation,which shows that the orders of convergence,as expected,can be achieved.The numerical simulations of the typical flows over a circular cylinder or a NACA 0012 airfoil are then carried out,and the results are further compared with the analytical solutions or available experimental and numerical values reported in the literature,as well as with a performance analysis of the developed code in terms of GPU speedups.This shows that the costs of computing time of the presented test cases are significantly reduced without losing accuracy,while impressive speedups up to 69.7 times are achieved by the present method in comparison to its CPU counterpart. 展开更多
关键词 discontinuous Galerkin GPU compute unified device architecture(CUDA) Navier-Stokes equation laminar flows
在线阅读 下载PDF
GPU based numerical simulation of core shooting process 被引量:1
6
作者 Yi-zhong Zhang Gao-chun Lu +3 位作者 Chang-jiang Ni Tao Jing Lin-long Yang Qin-fang Wu 《China Foundry》 SCIE 2017年第5期392-397,共6页
Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, r... Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model(TFM) and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit(GPU) has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture(CUDA) platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications. 展开更多
关键词 graphics processing unit (GPU) Compute Unified Device architecture (CUDA) PARALLELIZATION core shooting process
在线阅读 下载PDF
A two-stage CO-PSO minimum structure inversion using CUDA for extracting IP information from MT data 被引量:1
7
作者 董莉 李帝铨 江沸菠 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1195-1212,共18页
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i... The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results. 展开更多
关键词 Cauchy oscillation particle swarm optimization magnetotelluric sounding nonlinear inversion induced polarization (IP) information extraction compute unified distributed architecture (CUDA)
在线阅读 下载PDF
Hybrid domain multipactor prediction algorithm and its CUDA parallel implementation 被引量:1
8
作者 WU Peiyu XIE Yongjun +1 位作者 NIU Liqiang JIANG Haolin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1097-1104,共8页
Based on the finite element method(FEM)in the frequency domain and particle-in-cell approach in the time domain,a hybrid domain multipactor threshold prediction algorithm is proposed in this paper.The proposed algorit... Based on the finite element method(FEM)in the frequency domain and particle-in-cell approach in the time domain,a hybrid domain multipactor threshold prediction algorithm is proposed in this paper.The proposed algorithm has the advantages of the frequency domain and the time domain algorithms at the same time in terms of high computational accuracy and considerable computational efficiency.In addition,the compute unified device architecture(CUDA)acceleration technique also can be employed to further enhance its simulation efficiency.Numerical examples are carried out to demonstrate the effectiveness of the proposed algorithm.The results indicate that the multipactor threshold can be accurately predicted and the computational efficiency can be improved. 展开更多
关键词 compute unified device architecture(CUDA) finite element method(FEM) hybrid domain multipactor threshold prediction particle-in-cell(PIC)
在线阅读 下载PDF
Graphic Processing Unit Based Phase Retrieval and CT Reconstruction for Differential X-Ray Phase Contrast Imaging
9
作者 陈晓庆 王宇杰 孙建奇 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第5期550-554,共5页
Compared with the conventional X-ray absorption imaging, the X-ray phase-contrast imaging shows higher contrast on samples with low attenuation coefficient like blood vessels and soft tissues. Among the modalities of ... Compared with the conventional X-ray absorption imaging, the X-ray phase-contrast imaging shows higher contrast on samples with low attenuation coefficient like blood vessels and soft tissues. Among the modalities of phase-contrast imaging, the grating-based phase contrast imaging has been widely accepted owing to the advantage of wide range of sample selections and exemption of coherent source. However, the downside is the substantially larger amount of data generated from the phase-stepping method which slows down the reconstruction process. Graphic processing unit(GPU) has the advantage of allowing parallel computing which is very useful for large quantity data processing. In this paper, a compute unified device architecture(CUDA) C program based on GPU is introduced to accelerate the phase retrieval and filtered back projection(FBP) algorithm for grating-based tomography. Depending on the size of the data, the CUDA C program shows different amount of speed-up over the standard C program on the same Visual Studio 2010 platform. Meanwhile, the speed-up ratio increases as the size of data increases. 展开更多
关键词 grating-based phase contrast imaging parallel computing graphic processing unit(GPU) compute unified device architecture(CUDA) filtered back projection(FBP)
原文传递
Graphic Processing Unit-Accelerated Neural Network Model for Biological Species Recognition
10
作者 温程璐 潘伟 +1 位作者 陈晓熹 祝青园 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期5-8,共4页
A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary netw... A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species. 展开更多
关键词 graphic processing unit(GPU) compute unified device architecture (CUDA) neural network species recognition
在线阅读 下载PDF
Multi-relaxation-time lattice Boltzmann simulations of lid driven flows using graphics processing unit
11
作者 Chenggong LI J.P.Y.MAA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第5期707-722,共16页
Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simul... Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large. 展开更多
关键词 large eddy simulation (LES) multi-relaxation-time (MRT) lattice Boltzmann equation (LBE) two-dimensional nine velocity components (D2Q9) Smagorinskymodel graphic processing unit (GPU) computing unified device architecture (CUDA)
在线阅读 下载PDF
Machine Recognition of Plan Typologies: Shotgun and Foursquare
12
作者 Amanda Green Frank Jacobus +1 位作者 Jay McCormack Josh Hartung 《Computer Technology and Application》 2012年第1期24-31,共8页
The evolution of expert and knowledge-based systems in architecture requires the gradual population of building specific databases. Often these databases are slow to evolve due to the time consuming nature of effectiv... The evolution of expert and knowledge-based systems in architecture requires the gradual population of building specific databases. Often these databases are slow to evolve due to the time consuming nature of effectively categorizing building features in a meaningful way that allows for retrieval and reuse. New advances in artificial intelligence such as Hierarchical Temporal Memory (HTM) have the potential to make the construction of these databases more realistic in the near future. Based on an emerging theory of human neurological function, HTMs excel at ambiguous pattern recognition. This paper includes a first experiment using HTMs for learning and recognizing patterns in the form of two distinct American house plan typologies, and further tests the relationship of HTM's recognition tendencies in alternate house plan types. Results from the experiment indicate that HTMs develop a similar storage of quality to humans and are therefore a promising option for capturing multi-modal information in future design automation efforts. 展开更多
关键词 Hierarchical temporal memory (HTM) machine learning artificial intelligence architectural computation.
在线阅读 下载PDF
An enhanced GPU reduction at the warp-level
13
作者 Hou Neng He Fazhi Zhou Yi 《Computer Aided Drafting,Design and Manufacturing》 2016年第2期43-52,共10页
In recent years, graphical processing unit (GPU)-accelerated intelligent algorithms have been widely utilized for solving combination optimization problems, which are NP-hard, These intelligent algorithms involves a... In recent years, graphical processing unit (GPU)-accelerated intelligent algorithms have been widely utilized for solving combination optimization problems, which are NP-hard, These intelligent algorithms involves a common operation, namely reduction, in which the best suitable candidate solution in the neighborhood is selected. As one of the main procedures, it is necessary to optimize the reduction on the GPU. In this paper, we propose an enhanced warp-based reduction on the GPU. Compared with existing block-based reduction methods, our method exploit efficiently the potential of implementation at warp level, which better matches the characteristics of current GPU architecture. Firstly, in order to improve the global memory access performance, the vectoring accessing is utilized. Secondly, at the level of thread block reduction, an enhanced warp-based reduction on the shared memory are presented to form partial results. Thirdly, for the configuration of the number of thread blocks, the number of thread blocks can be obtained by maximizing the size of thread block and the maximum size of threads per stream multi-processor on GPU. Finally, the proposed method is evaluated on three generations of NVIDIA GPUs with the better performances than previous methods. 展开更多
关键词 REDUCTION graphical processing unit computing unified device architecture warp-level reduction
在线阅读 下载PDF
High-precision parallel computing model of solute transport based on GPU acceleration
14
作者 Shang-hong Zhang Rong-qi Zhang +2 位作者 Wen-da Li Xi-yan Yang Yang Zhou 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第1期202-212,共11页
The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of hi... The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of high-intensity pollutants during sudden environmental water pollution events,in this study,a high-precision pollution transport and diffusion model for unstructured grids based on Compute Unified Device Architecture(CUDA)is proposed.The finite volume method of a total variation diminishing limiter with the Kong proposed r-factor is used to reduce numerical diffusion and oscillation errors in the simulation of pollutants under sharp concentration conditions,and graphics processing unit acceleration technology is used to improve computational efficiency.The advection diffusion process of the model is verified numerically using two benchmark cases,and the efficiency of the model is evaluated using an engineering example.The results demonstrate that the model perform well in the simulation of material transport in the presence of sharp concentration.Additionally,it has high computational efficiency.The acceleration ratio is 46 times the single-thread acceleration effect of the original model.The efficiency of the accelerated model meet the requirements of an engineering application,and the rapid early warning and assessment of water pollution accidents is achieved. 展开更多
关键词 Pollution transport and diffusion model parallel computing Compute Unified Device architecture(CUDA) pollution event
原文传递
Degassing and doping unlock the longevity code of OECTs
15
作者 Baoguang Liu Yuzhe Gu Yang Li 《Science China Materials》 2025年第6期2154-2156,共3页
Organic electrochemical transistors(OECTs),essential components in bioelectronics,serve as a bridge between biological systems and electronic interfaces by converting ionic signals into electronic currents,making them... Organic electrochemical transistors(OECTs),essential components in bioelectronics,serve as a bridge between biological systems and electronic interfaces by converting ionic signals into electronic currents,making them crucial for applications like implantable biosensors,wearable health monitors,and neuromorphic computing architectures[1,2].Despite their ability to bind directly to biological fluids and tissues,and excellent conformal interfaces with dynamic surfaces such as human skin,due to repeated electrochemical cycling,exposure to environmental factors,and parasitic reactions,OECTs still face persistent stability issues that often manifest as hysteresis in device performance,continuously limiting their potential for long-term bioelectronic applications[3,4].Therefore,addressing this instability is crucial to unlocking the full potential of OECTs in chronic medical monitoring,adaptive biohybrid systems,and energy-efficient neuromorphic hardware. 展开更多
关键词 DOPING implantable biosensorswearable DEGASSING organic electrochemical transistors oects essential neuromorphic computing architectures despite converting ionic signals electronic currentsmaking biological systems electronic interfaces human skindue
原文传递
Synchronization of spin torque oscillators:A review
16
作者 Jialin Shi Zhenhu Jin +3 位作者 Guangyuan Chen Xi Luo Guozhong Xing Jiamin Chen 《Science China(Physics,Mechanics & Astronomy)》 2025年第4期9-25,共17页
The synchronization of nonlinear systems has been demonstrated in several natural systems,which not only enhances the performance of spin torque oscillators(STOs)but also enables the modification of STOs for new compu... The synchronization of nonlinear systems has been demonstrated in several natural systems,which not only enhances the performance of spin torque oscillators(STOs)but also enables the modification of STOs for new computing architectures.This paper reviews recent advances in the mutual synchronization,forced synchronization,and noise synchronization of STOs from both theoretical and experimental perspectives.The main types of synchronization discussed include spin wave synchronization,dipolar field synchronization,electrical connection synchronization,and injection locking.After introducing the theoretical and experimental progress in these fields,we highlight the importance of synchronization for practical applications in both microwave devices and neuromorphic computing.The significance of these studies for understanding and applying STO synchronization is emphasized,and we offer our perspective on current research,suggesting directions for future studies. 展开更多
关键词 spin torque oscillator mutual synchronization injection locking new computing architecture
原文传递
CUSMART:effective parallelization of stringmatching algorithms using GPGPU accelerators
17
作者 Adnan OZSOY Mengu NAZLI +1 位作者 Onur CANKUR Cagri SAHIN 《Frontiers of Information Technology & Electronic Engineering》 2025年第6期877-895,共19页
This study presents a parallel version of the string matching algorithms research tool(SMART)library,implemented on NVIDIA’s compute unified device architecture(CUDA)platform,and uses general-purpose computing on gra... This study presents a parallel version of the string matching algorithms research tool(SMART)library,implemented on NVIDIA’s compute unified device architecture(CUDA)platform,and uses general-purpose computing on graphics processing unit(GPGPU)programming concepts to enhance performance and gain insight into the parallel versions of these algorithms.We have developed the CUDA-enhanced SMART(CUSMART)library,which incorporates parallelized iterations of 64 string matching algorithms,leveraging the CUDA application programming interface.The performance of these algorithms has been assessed across various scenarios to ensure a comprehensive and impartial comparison,allowing for the identification of their strengths and weaknesses in specific application contexts.We have explored and established optimization techniques to gauge their influence on the performance of these algorithms.The results of this study highlight the potential of GPGPU computing in string matching applications through the scalability of algorithms,suggesting significant performance improvements.Furthermore,we have identified the best and worst performing algorithms in various scenarios. 展开更多
关键词 String matching Parallel programming Graphics processing unit(GPU)programming General-purpose computing on GPU(GPGPU) NVIDIA Compute unified device architecture(CUDA) String matching algorithms research tool(SMART)
原文传递
A Cloud Service Architecture for Analyzing Big Monitoring Data 被引量:3
18
作者 Samneet Singh Yan Liu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第1期55-70,共16页
Cloud monitoring is of a source of big data that are constantly produced from traces of infrastructures,platforms, and applications. Analysis of monitoring data delivers insights of the system's workload and usage pa... Cloud monitoring is of a source of big data that are constantly produced from traces of infrastructures,platforms, and applications. Analysis of monitoring data delivers insights of the system's workload and usage pattern and ensures workloads are operating at optimum levels. The analysis process involves data query and extraction, data analysis, and result visualization. Since the volume of monitoring data is big, these operations require a scalable and reliable architecture to extract, aggregate, and analyze data in an arbitrary range of granularity. Ultimately, the results of analysis become the knowledge of the system and should be shared and communicated. This paper presents our cloud service architecture that explores a search cluster for data indexing and query. We develop REST APIs that the data can be accessed by different analysis modules. This architecture enables extensions to integrate with software frameworks of both batch processing(such as Hadoop) and stream processing(such as Spark) of big data. The analysis results are structured in Semantic Media Wiki pages in the context of the monitoring data source and the analysis process. This cloud architecture is empirically assessed to evaluate its responsiveness when processing a large set of data records under node failures. 展开更多
关键词 cloud computing REST API big data software architecture semantic web
原文传递
Design and development of module management controller for MicroTCA.4 standard
19
作者 Gan Nan Ma Xinpeng +1 位作者 Peng Yongyi Li Jingyi 《Radiation Detection Technology and Methods》 CSCD 2024年第2期1131-1139,共9页
Objective The MicroTCA.4(MTCA.4)standard systems have been widely used in large-scale scientific facilities such as synchrotron radiation light sources and FELs over the world,covering RF control,beam instrumentation,... Objective The MicroTCA.4(MTCA.4)standard systems have been widely used in large-scale scientific facilities such as synchrotron radiation light sources and FELs over the world,covering RF control,beam instrumentation,timing,machine protection,and so on.The MTCA.4 module management controller(MMC)realizes intelligent management of the boards in the chassis through bus protocol and system interaction.It is an important functional module in MTCA.4 standard system.Methods In order to meet the requirements of the large scientific facilities,an MMC module was designed and developed.This design can realize power management of Advanced Mezzanine Card(AMC)and Rear Transition Module(RTM)boards,as well as monitoring the temperature,voltage,and current during operation.The core part of this module is limited into an area of 3 cm 3 cm on the AMC board,leaving large space for subsequent development of functional circuit.Results An AMC board was developed to verify functions of the MMC.Test results indicate that this board is compatible with existing MTCA.4 standard system.Conclusions This MMC solution can be directly and modularly applied to the design of MTCA.4 standard hardware. 展开更多
关键词 Micro Telecommunications computing architecture(MTCA) Module management controller(MMC) Advanced mezzanine card(AMC) Rear transition module(RTM)
原文传递
High-Performance Flow Classification of Big Data Using Hybrid CPU-GPU Clusters of Cloud Environments
20
作者 Azam Fazel-Najafabadi Mahdi Abbasi +5 位作者 Hani H.Attar Ayman Amer Amir Taherkordi Azad Shokrollahi Mohammad R.Khosravi Ahmed A.Solyman 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第4期1118-1137,共20页
The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific f... The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific flows by matching them against a set of dynamic rules. This basic process accelerates the processing of data, so that instead of processing singular packets repeatedly, corresponding actions are performed on corresponding flows of packets. In this paper, first, we address limitations on a typical packet classification algorithm like Tuple Space Search (TSS). Then, we present a set of different scenarios to parallelize it on different parallel processing platforms, including Graphics Processing Units (GPUs), clusters of Central Processing Units (CPUs), and hybrid clusters. Experimental results show that the hybrid cluster provides the best platform for parallelizing packet classification algorithms, which promises the average throughput rate of 4.2 Million packets per second (Mpps). That is, the hybrid cluster produced by the integration of Compute Unified Device Architecture (CUDA), Message Passing Interface (MPI), and OpenMP programming model could classify 0.24 million packets per second more than the GPU cluster scheme. Such a packet classifier satisfies the required processing speed in the programmable network systems that would be used to communicate big medical data. 展开更多
关键词 OPENMP Compute Unified Device architecture(CUDA) Message Passing Interface(MPI) packet classification medical data tuple space algorithm Graphics Processing Unit(GPU)cluster
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部