期刊文献+
共找到255,985篇文章
< 1 2 250 >
每页显示 20 50 100
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
1
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes SENSOR Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Mechanical Properties Analysis of Flexible Memristors for Neuromorphic Computing
2
作者 Zhenqian Zhu Jiheng Shui +1 位作者 Tianyu Wang Jialin Meng 《Nano-Micro Letters》 2026年第1期53-79,共27页
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle... The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics. 展开更多
关键词 Flexible memristor Neuromorphic computing Mechanical property Wearable electronics
在线阅读 下载PDF
High-Entropy Oxide Memristors for Neuromorphic Computing:From Material Engineering to Functional Integration
3
作者 Jia‑Li Yang Xin‑Gui Tang +4 位作者 Xuan Gu Qi‑Jun Sun Zhen‑Hua Tang Wen‑Hua Li Yan-Ping Jiang 《Nano-Micro Letters》 2026年第2期138-169,共32页
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f... High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics. 展开更多
关键词 High-entropy oxides MEMRISTORS Neuromorphic computing Configurational entropy Resistive switching
在线阅读 下载PDF
国产HPC与AI芯片制造装备技术现状与发展策略分析 被引量:2
4
作者 高岳 郭春华 +1 位作者 米雪 刘容嘉 《电子工业专用设备》 2025年第1期1-6,27,共7页
回顾了国产高性能计算(HPC)与人工智能(AI)芯片制造装备的发展历程,总结了目前的技术现状与面临的挑战。分析了国内外高性能计算与人工智能芯片制造装备的发展趋势和技术特点,并提出了针对国产装备发展的具体策略与建议,以期推动我国在... 回顾了国产高性能计算(HPC)与人工智能(AI)芯片制造装备的发展历程,总结了目前的技术现状与面临的挑战。分析了国内外高性能计算与人工智能芯片制造装备的发展趋势和技术特点,并提出了针对国产装备发展的具体策略与建议,以期推动我国在这一领域的自主创新能力和发展水平。 展开更多
关键词 高性能计算 人工智能 芯片制造设备 国产化 发展策略
在线阅读 下载PDF
ESS-HPC与既有混凝土界面抗剪性能试验研究 被引量:1
5
作者 吕昭旭 张冠军 +2 位作者 杨才千 杜文平 李郴 《混凝土》 北大核心 2025年第5期1-6,11,共7页
为研究早强自密实补偿收缩高性能混凝土(ESS-HPC)和普通混凝土(OCS)的界面黏结性能,设计并制作了27组试件,通过直剪试验分析ESS-HPC抗压强度、OCS表面处理方式、ESS-HPC养护龄期和界面剂等参数对界面黏结强度的影响。试验结果表明:ESS-H... 为研究早强自密实补偿收缩高性能混凝土(ESS-HPC)和普通混凝土(OCS)的界面黏结性能,设计并制作了27组试件,通过直剪试验分析ESS-HPC抗压强度、OCS表面处理方式、ESS-HPC养护龄期和界面剂等参数对界面黏结强度的影响。试验结果表明:ESS-HPC&OCS试件界面破坏形态主要分为界面破坏、界面剪切破坏以及界面和OCS基体部分破坏;当ESS-HPC强度等级从C60增加到C75时,试件的剪切黏结强度增加了近15%;对比未处理表面,凿毛+钻孔组试件的黏结强度可提升80.91%;在界面处使用丁苯乳液作为界面剂时,试件的黏结强度要高于其他界面剂的试件,但均低于无界面剂的现浇试件组,增加界面剂最高可降低界面黏结强度约26.1%;此外,界面黏结强度随着养护龄期的增加而呈增长趋势,且在28 d后这一趋势逐渐趋于稳定。因此,建议采用强度更高的ESS-HPC并在OCS表面进行钻孔和凿毛,以有效确保ESS-HPC的加固效果。 展开更多
关键词 早强自密实补偿收缩高性能混凝土(ESS-hpc) 黏结性能 粗糙度 直剪试验
在线阅读 下载PDF
Towards Auction-Based HPC Computing in the Cloud
6
作者 Moussa Taifi Justin Y. Shi Abdallah Khreishah 《Computer Technology and Application》 2012年第7期499-509,共11页
Cloud computing is expanding widely in the world of IT infrastructure. This is due partly to the cost-saving effect of economies of scale. Fair market conditions can in theory provide a healthy environment to reflect ... Cloud computing is expanding widely in the world of IT infrastructure. This is due partly to the cost-saving effect of economies of scale. Fair market conditions can in theory provide a healthy environment to reflect the most reasonable costs of computations. While fixed cloud pricing provides an attractive low entry barrier for compute-intensive applications, both the consumer and supplier of computing resources can see high efficiency for their investments by participating in auction-based exchanges. There are huge incentives for the cloud provider to offer auctioned resources. However, from the consumer perspective, using these resources is a sparsely discussed challenge. This paper reports a methodology and framework designed to address the challenges of using HPC (High Performance Computing) applications on auction-based cloud clusters. The authors focus on HPC applications and describe a method for determining bid-aware checkpointing intervals. They extend a theoretical model for determining checkpoint intervals using statistical analysis of pricing histories. Also the latest developments in the SpotHPC framework are introduced which aim at facilitating the managed execution of real MPI applications on auction-based cloud environments. The authors use their model to simulate a set of algorithms with different computing and communication densities. The results show the complex interactions between optimal bidding strategies and parallel applications performance. 展开更多
关键词 Auction-based cloud computing fault tolerance cloud hpc (high performance computing
在线阅读 下载PDF
Web-Based Computing and Property Database Portlet by Using HPC Portal Development Platform
7
作者 Chien-Heng Wu 《通讯和计算机(中英文版)》 2011年第12期1023-1032,共10页
关键词 开发平台 性能计算 PORTLET hpc Web 属性数据库 门户 企业应用程序
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
8
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
腹板植筋和填充ESS-HPC组合加固空心板梁抗剪性能研究
9
作者 杜文平 杨才千 张冠军 《西安建筑科技大学学报(自然科学版)》 北大核心 2025年第4期511-519,共9页
针对空心板梁桥出现腹板斜裂缝病害,提出“腹板植筋+填充ESS-HPC”组合加固法.共设计9根空心板梁(Hollow core beam,简称HCB)试件,包括5根加固梁和4根对比梁,主要研究剪跨比和开口尺寸对HCB抗剪性能影响,同时提出抗剪承载力分析模型.试... 针对空心板梁桥出现腹板斜裂缝病害,提出“腹板植筋+填充ESS-HPC”组合加固法.共设计9根空心板梁(Hollow core beam,简称HCB)试件,包括5根加固梁和4根对比梁,主要研究剪跨比和开口尺寸对HCB抗剪性能影响,同时提出抗剪承载力分析模型.试验结果表明:与未加固梁相比,当剪跨比大于1且小于3时,加固梁的抗剪力学性能提升约60%.随着剪跨比增加,抗剪力学性能逐渐降低.“腹板植筋+填充ESS-HPC”组合加固法可提高剪压区的开裂荷载约50%,并降低箍筋应力.全开口可以降低初始刚度和裂缝宽度,但对极限荷载影响比较小.对比梁发生腹剪破坏模式且为脆性破坏,而加固梁发生弯剪破坏模式且为延性破坏.随着剪跨比增加,试验梁的受剪破坏模式由剪切破坏逐渐向弯剪破坏转变.最后,结合试验结果提出符合“腹板植筋+填充ESS-HPC”组合加固法的评估模型. 展开更多
关键词 ESS-hpc 填充 腹板植筋 抗剪承承载力 评估模型
在线阅读 下载PDF
勘探超算中心HPC服务器性能测试研究与分析 被引量:1
10
作者 朱启伟 李书平 王西林 《信息系统工程》 2025年第3期75-78,共4页
HPC以往都是以引进国际品牌的服务器、存储以及网络产品为主,随着国产技术发展及信息安全原因,国家现阶段高度重视国产化,HPC逐渐向国产化方向发展,国产HPC集群能否满足本行业的业务需求,就需对服务器集群作传统部署和Linpack测试。通... HPC以往都是以引进国际品牌的服务器、存储以及网络产品为主,随着国产技术发展及信息安全原因,国家现阶段高度重视国产化,HPC逐渐向国产化方向发展,国产HPC集群能否满足本行业的业务需求,就需对服务器集群作传统部署和Linpack测试。通过全都由国产知名品牌存储、服务器、网络部署HPC集群系统,并进行各种场景的性能测试研究与分析,得出国产HPC性能优越,完全符合业务需求的结论。 展开更多
关键词 hpc LINPACK 性能测试 国产
在线阅读 下载PDF
道德概念是一种HPC概念吗?——浅议厚道德概念与道德概念自然化
11
作者 王奕文 《北京科技大学学报(社会科学版)》 2025年第1期129-136,共8页
道德概念与自然概念的关系是元伦理学领域的重要议题,自然主义者同意道德概念可以通过自然概念说明却被摩尔批判为“自然主义谬误”,博伊德提出属性稳态丛聚理论(homeostatic property cluster,以下简称HPC)以规避该批评。定义HPC类词... 道德概念与自然概念的关系是元伦理学领域的重要议题,自然主义者同意道德概念可以通过自然概念说明却被摩尔批判为“自然主义谬误”,博伊德提出属性稳态丛聚理论(homeostatic property cluster,以下简称HPC)以规避该批评。定义HPC类词项的内在属性间应具有因果联系,但对“善”概念进行的两个思想实验证明“善”概念不具有归纳推理适宜性,这意味着薄道德概念难以具备成为HPC概念的必要条件。厚道德概念由于含有丰富的描述性内容更有利于归纳。文章试将厚道德概念作为HPC概念定义并确定其丛聚属性,以维护部分道德概念的自然性、彰显道德概念的历史与社会维度。 展开更多
关键词 hpc概念 厚概念 道德自然主义实在论
在线阅读 下载PDF
Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing 被引量:2
12
作者 Qiaoling Tian Kuo Xun +7 位作者 Zhuangzhuang Li Xiaoning Zhao Ya Lin Ye Tao Zhongqiang Wang Daniele Ielmini Haiyang Xu Yichun Liu 《Journal of Semiconductors》 2025年第2期144-149,共6页
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ... Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system. 展开更多
关键词 optoelectronic memristor volatile switching muti-mode reservoir computing
在线阅读 下载PDF
Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning 被引量:1
13
作者 Jiajia Liu Peng Xie +2 位作者 Wei Li Bo Tang Jianhua Liu 《Computers, Materials & Continua》 2025年第2期2609-2635,共27页
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the... As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments. 展开更多
关键词 Edge computing adaptive META task offloading joint optimization
在线阅读 下载PDF
Near‑Sensor Edge Computing System Enabled by a CMOS Compatible Photonic Integrated Circuit Platform Using Bilayer AlN/Si Waveguides 被引量:1
14
作者 Zhihao Ren Zixuan Zhang +4 位作者 Yangyang Zhuge Zian Xiao Siyu Xu Jingkai Zhou Chengkuo Lee 《Nano-Micro Letters》 2025年第11期1-20,共20页
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc... The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment. 展开更多
关键词 Photonic integrated circuits Edge computing Aluminum nitride Neural networks Wearable sensors
在线阅读 下载PDF
Synaptic devices based on silicon carbide for neuromorphic computing 被引量:1
15
作者 Boyu Ye Xiao Liu +2 位作者 Chao Wu Wensheng Yan Xiaodong Pi 《Journal of Semiconductors》 2025年第2期38-51,共14页
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario... To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined. 展开更多
关键词 silicon carbide wide bandgap semiconductors synaptic devices neuromorphic computing high temperature
在线阅读 下载PDF
基于HPC时间序列的Docker容器内恶意加密挖矿检测方法研究
16
作者 宋志伟 《自动化与仪器仪表》 2025年第8期88-91,96,共5页
为了实现Docker容器中恶意加密挖矿检测,研究提出了基于硬件性能计数器时间序列的检测方法,首先对容器运行进行分析,并与容器内恶意软件识别;然后采集时间序列特征数据,通过随机森林算法确定数据中的恶意加密挖矿行为特征,最后结合卷积... 为了实现Docker容器中恶意加密挖矿检测,研究提出了基于硬件性能计数器时间序列的检测方法,首先对容器运行进行分析,并与容器内恶意软件识别;然后采集时间序列特征数据,通过随机森林算法确定数据中的恶意加密挖矿行为特征,最后结合卷积神经网络识别恶意加密挖矿行为。结果显示,恶意检测方法的应用对各个测试项目的评分均产生一定的影响,但影响程度各不相同,但整体影响较小。研究方法的内存以及CPU使用成本分别为0.42%、1.8%。传统恶意检测方法数据收集时内存以及CPU使用成本分别为0.61%、2.2%,可见研究方法采用HPC时间序列进行恶意检测成本较低,效率更高,能够为网络安全提供更加坚实的保障。 展开更多
关键词 hpc Docker容器 恶意软件 加密挖矿检测 随机森林
原文传递
CBBM-WARM:A Workload-Aware Meta-Heuristic for Resource Management in Cloud Computing 被引量:1
17
作者 K Nivitha P Pabitha R Praveen 《China Communications》 2025年第6期255-275,共21页
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi... The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks. 展开更多
关键词 autonomic resource management cloud computing coot bird behavior model SLA violation cost WORKLOAD
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
18
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
DeepSeek vs.ChatGPT vs.Claude:A comparative study for scientific computing and scientific machine learning tasks 被引量:1
19
作者 Qile Jiang Zhiwei Gao George Em Karniadakis 《Theoretical & Applied Mechanics Letters》 2025年第3期194-206,共13页
Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different ... Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed. 展开更多
关键词 Large language models(LLM) Scientific computing Scientific machine learning Physics-informed neural network
在线阅读 下载PDF
HPC墙板在建筑幕墙应用中的结构分析及优化
20
作者 陈雪瑞 赵丽华 曹百站 《建筑技艺(中英文)》 2025年第S1期425-427,共3页
本文研究了高性能混凝土(HPC)墙板系统在幕墙应用中的优势与局限,通过分析在风、温度、地震等荷载条件下墙板的受力情况,提出了纤维网格增强、节点构造改进等优化策略,并加入工程实例分析,为HPC墙板在建筑外立面应用提供一些技术参考。
关键词 高性能混凝土(hpc) 幕墙系统 纤维网格增强 受力机理 有限元分析
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部