Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing o...Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness.展开更多
Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousa...Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousands of alarmed tech leaders recently signed an open letter to pause AI research to prepare for the catastrophic threats to humanity from uncontrolled AGI (Artificial General Intelligence). Perceived as an “epistemological nightmare”, AGI is believed to be on the anvil with GPT-5. Two computing rules appear responsible for these risks. 1) Mandatory third-party permissions that allow computers to run applications at the expense of introducing vulnerabilities. 2) The Halting Problem of Turing-complete AI programming languages potentially renders AGI unstoppable. The double whammy of these inherent weaknesses remains invincible under the legacy systems. A recent cybersecurity breakthrough shows that banning all permissions reduces the computer attack surface to zero, delivering a new zero vulnerability computing (ZVC) paradigm. Deploying ZVC and blockchain, this paper formulates and supports a hypothesis: “Safe, secure, ethical, controllable AGI/QC is possible by conquering the two unassailable rules of computability.” Pursued by a European consortium, testing/proving the proposed hypothesis will have a groundbreaking impact on the future digital infrastructure when AGI/QC starts powering the 75 billion internet devices by 2025.展开更多
In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “...In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.展开更多
Deep vein thrombosis (DVT) is a common and potentially fatal vascular event when it leads to pulmonary embolism. Occurring as part of the broader phenomenon of Venous Thromboembolism (VTE), DVT classically arises when...Deep vein thrombosis (DVT) is a common and potentially fatal vascular event when it leads to pulmonary embolism. Occurring as part of the broader phenomenon of Venous Thromboembolism (VTE), DVT classically arises when Virchow’s triad of hypercoagulability, changes in blood flow (e.g. stasis) and endothelial dysfunction, is fulfilled. Although such immobilisation is most often seen in bedbound patients and travellers on long distance flights, there is increasing evidence that prolonged periods of work or leisure related to using computers while seated at work desks, is an independent risk factor. In this report, we present two cases of “e-thrombosis” from prolonged sitting while using a computer.展开更多
We are already familiar with computers——computers work for us at home, in offices and in factories. But it is also true that many children today are using computers at schools before they can write. What does this m...We are already familiar with computers——computers work for us at home, in offices and in factories. But it is also true that many children today are using computers at schools before they can write. What does this mean for the future? Are these children lucky or not?展开更多
In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot n...In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot necessarily unitary.The duality mode provides a natural link between classical computing and quantum computing.In addition,the duality mode provides a new tool for quantum algorithm design.展开更多
A new approach for the implementation of variogram models and ordinary kriging using the R statistical language, in conjunction with Fortran, the MPI (Message Passing Interface), and the "pbdDMAT" package within R...A new approach for the implementation of variogram models and ordinary kriging using the R statistical language, in conjunction with Fortran, the MPI (Message Passing Interface), and the "pbdDMAT" package within R on the Bridges and Stampede Supercomputers will be described. This new technique has led to great improvements in timing as compared to those in R alone, or R with C and MPI. These improvements include processing and forecasting vectors of size 25,000 in an average time of 6 minutes on the Stampede Supercomputer and 2.5 minutes on the Bridges Supercomputer as compared to previous processing times of 3.5 hours.展开更多
Nonadiabatic holonomic quantum computers serve as the physical platform for nonadiabatic holonomic quantum computation.As quantum computation has entered the noisy intermediate-scale era,building accurate intermediate...Nonadiabatic holonomic quantum computers serve as the physical platform for nonadiabatic holonomic quantum computation.As quantum computation has entered the noisy intermediate-scale era,building accurate intermediate-scale nonadiabatic holo-nomic quantum computers is clearly necessary.Given that measurements are the sole means of extracting information,they play an indispensable role in nonadiabatic holonomic quantum computers.Accordingly,developing methods to reduce measurement errors in nonadiabatic holonomic quantum computers is of great importance.However,while much attention has been given to the research on nonadiabatic holonomic gates,the research on reducing measurement errors in nonadiabatic holonomic quantum computers is severely lacking.In this study,we propose a measurement error reduction method tailored for intermediate-scale nonadiabatic holonomic quantum computers.The reason we say this is because our method can not only reduce the measurement errors in the computer but also be useful in mitigating errors originating from nonadiabatic holonomic gates.Given these features,our method significantly advances the construction of accurate intermediate-scale nonadiabatic holonomic quantum computers.展开更多
Huawei Launches PCs Running Homegrown Operating System Chinese tech giant Huawei unveiled two laptops powered by HarmonyOS on May 19,marking the debut of its homegrown operating system on personal computers(PCs).The l...Huawei Launches PCs Running Homegrown Operating System Chinese tech giant Huawei unveiled two laptops powered by HarmonyOS on May 19,marking the debut of its homegrown operating system on personal computers(PCs).The launch of the Huawei MateBook Pro and MateBook Fold Ultimate Design signals the company’s push to expand HarmonyOS beyond smartphones and tablets into a PC market long led by Microsoft’s Windows and Apple’s macOS.展开更多
At the Konza Technopolis,the hum of computers signals a new era for Kenyan youth.Here,amidst the rhythmic tapping of keyboards,they learn master coding,artificial intelligence,and cloud computing within this flagship ...At the Konza Technopolis,the hum of computers signals a new era for Kenyan youth.Here,amidst the rhythmic tapping of keyboards,they learn master coding,artificial intelligence,and cloud computing within this flagship project of the Kenya government,60 km from Nairobi,dubbed the“Silicon Savannah,”and developing as a Science Park and Area of Innovation.展开更多
Amongst all the scientific achievements in the 20th century,no single invention has impacted our lives more profoundly than the transistors,or semiconductors.Since we entered the era of computing in the 1960s,we have ...Amongst all the scientific achievements in the 20th century,no single invention has impacted our lives more profoundly than the transistors,or semiconductors.Since we entered the era of computing in the 1960s,we have witnessed a number of notable transformational shifts such as the transition to personal computers and then mobile era.展开更多
张岩,男,1980年出生,江苏新沂人,中共党员,心理学博士,教授,江苏第二师范学院心理学系主任、应用心理学专业负责人,南京师范大学心理学院兼职硕士生导师。担任Computers in Human Behavior等SSCI期刊外审专家,江苏省心理学会理事,江苏...张岩,男,1980年出生,江苏新沂人,中共党员,心理学博士,教授,江苏第二师范学院心理学系主任、应用心理学专业负责人,南京师范大学心理学院兼职硕士生导师。担任Computers in Human Behavior等SSCI期刊外审专家,江苏省心理学会理事,江苏省心理学会教学工作委员会副主任委员兼秘书长。主要从事处境不利儿童的心理健康与适应、青少年成瘾行为和教师教育等方面研究。展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
BACKGROUND Internal hernia(IH)is a rare culprit of small bowel obstruction(SBO)with an incidence of<1%.It poses a considerable diagnostic challenge requiring a high index of suspicion to prevent misdiagnosis,improp...BACKGROUND Internal hernia(IH)is a rare culprit of small bowel obstruction(SBO)with an incidence of<1%.It poses a considerable diagnostic challenge requiring a high index of suspicion to prevent misdiagnosis,improper treatment,and subsequent morbidity and mortality.AIM To determine the clinico-demographic profile,radiological and operative findings,and postoperative course of patients with IH and its association with SBO.METHODS Medical records of 586 patients with features of SBO presenting at a tertiary care centre at Lucknow,India between September 2010 and August 2023 were reviewed.RESULTS Out of 586 patients,7(1.2%)were diagnosed with IH.Among these,4 had congenital IH and 3 had acquired IH.The male-to-female ratio was 4:3.The median age at presentation was 32 years.Contrast-enhanced computed tomography(CECT)was the most reliable investigation for preoperative identification,demonstrating mesenteric whirling and clumped-up bowel loops.Left paraduodenal hernia and transmesenteric hernia occurred with an equal frequency(approximately 43%each).Intraoperatively,one patient was found to have bowel ischemia and one had associated malrotation of gut.During follow-up,no recurrences were reported.CONCLUSION IH,being a rare cause,must be considered as a differential diagnosis for SBO,especially in young patients in their 30s or with unexplained abdominal pain or discomfort post-surgery.A rapid imaging evaluation,preferably with CECT,is necessary to aid in an early diagnosis and prompt intervention,thereby reducing financial burden related to unnecessary investigations and preventing the morbidity and mortality associated with closed-loop obstruction and strangulation of the bowel.展开更多
Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible ligh...Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light,whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals.This direct conversion allows photon-counting detectors to sort photons into discrete energy levels,thereby enhancing image quality through superior noise reduction,improved spatial and contrast resolution,and reduced artifacts.In pediatric applications,PCCT offers substantial benefits,including lower radiation doses,which may help reduce the risk of malignancy in pediatric patients,with perhaps greater potential to benefit those with repeated exposure from a young age.Enhanced spatial resolution facilitates better visualization of small structures,vital for diagnosing congenital heart defects.Additionally,PCCT’s spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images,which enhance soft-tissue contrast and potentially reduce contrast media doses.Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conven-tional CT,particularly in challenging pediatric cardiovascular cases.As PCCT technology matures,further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices,ensuring optimized diagnostic outcomes and patient safety.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 52307134the Fundamental Research Funds for the Central Universities(xzy012025022)。
文摘Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness.
文摘Although AI and quantum computing (QC) are fast emerging as key enablers of the future Internet, experts believe they pose an existential threat to humanity. Responding to the frenzied release of ChatGPT/GPT-4, thousands of alarmed tech leaders recently signed an open letter to pause AI research to prepare for the catastrophic threats to humanity from uncontrolled AGI (Artificial General Intelligence). Perceived as an “epistemological nightmare”, AGI is believed to be on the anvil with GPT-5. Two computing rules appear responsible for these risks. 1) Mandatory third-party permissions that allow computers to run applications at the expense of introducing vulnerabilities. 2) The Halting Problem of Turing-complete AI programming languages potentially renders AGI unstoppable. The double whammy of these inherent weaknesses remains invincible under the legacy systems. A recent cybersecurity breakthrough shows that banning all permissions reduces the computer attack surface to zero, delivering a new zero vulnerability computing (ZVC) paradigm. Deploying ZVC and blockchain, this paper formulates and supports a hypothesis: “Safe, secure, ethical, controllable AGI/QC is possible by conquering the two unassailable rules of computability.” Pursued by a European consortium, testing/proving the proposed hypothesis will have a groundbreaking impact on the future digital infrastructure when AGI/QC starts powering the 75 billion internet devices by 2025.
文摘In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.
文摘Deep vein thrombosis (DVT) is a common and potentially fatal vascular event when it leads to pulmonary embolism. Occurring as part of the broader phenomenon of Venous Thromboembolism (VTE), DVT classically arises when Virchow’s triad of hypercoagulability, changes in blood flow (e.g. stasis) and endothelial dysfunction, is fulfilled. Although such immobilisation is most often seen in bedbound patients and travellers on long distance flights, there is increasing evidence that prolonged periods of work or leisure related to using computers while seated at work desks, is an independent risk factor. In this report, we present two cases of “e-thrombosis” from prolonged sitting while using a computer.
文摘We are already familiar with computers——computers work for us at home, in offices and in factories. But it is also true that many children today are using computers at schools before they can write. What does this mean for the future? Are these children lucky or not?
基金the National Fundamental Research Program under Grant No.2006CB921106National Natural Science Foundation of China under Grant Nos.10325521 and 60433050
文摘In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot necessarily unitary.The duality mode provides a natural link between classical computing and quantum computing.In addition,the duality mode provides a new tool for quantum algorithm design.
文摘A new approach for the implementation of variogram models and ordinary kriging using the R statistical language, in conjunction with Fortran, the MPI (Message Passing Interface), and the "pbdDMAT" package within R on the Bridges and Stampede Supercomputers will be described. This new technique has led to great improvements in timing as compared to those in R alone, or R with C and MPI. These improvements include processing and forecasting vectors of size 25,000 in an average time of 6 minutes on the Stampede Supercomputer and 2.5 minutes on the Bridges Supercomputer as compared to previous processing times of 3.5 hours.
基金supported by the National Natural Science Foundation of China(Grant No.12174224)。
文摘Nonadiabatic holonomic quantum computers serve as the physical platform for nonadiabatic holonomic quantum computation.As quantum computation has entered the noisy intermediate-scale era,building accurate intermediate-scale nonadiabatic holo-nomic quantum computers is clearly necessary.Given that measurements are the sole means of extracting information,they play an indispensable role in nonadiabatic holonomic quantum computers.Accordingly,developing methods to reduce measurement errors in nonadiabatic holonomic quantum computers is of great importance.However,while much attention has been given to the research on nonadiabatic holonomic gates,the research on reducing measurement errors in nonadiabatic holonomic quantum computers is severely lacking.In this study,we propose a measurement error reduction method tailored for intermediate-scale nonadiabatic holonomic quantum computers.The reason we say this is because our method can not only reduce the measurement errors in the computer but also be useful in mitigating errors originating from nonadiabatic holonomic gates.Given these features,our method significantly advances the construction of accurate intermediate-scale nonadiabatic holonomic quantum computers.
文摘Huawei Launches PCs Running Homegrown Operating System Chinese tech giant Huawei unveiled two laptops powered by HarmonyOS on May 19,marking the debut of its homegrown operating system on personal computers(PCs).The launch of the Huawei MateBook Pro and MateBook Fold Ultimate Design signals the company’s push to expand HarmonyOS beyond smartphones and tablets into a PC market long led by Microsoft’s Windows and Apple’s macOS.
文摘At the Konza Technopolis,the hum of computers signals a new era for Kenyan youth.Here,amidst the rhythmic tapping of keyboards,they learn master coding,artificial intelligence,and cloud computing within this flagship project of the Kenya government,60 km from Nairobi,dubbed the“Silicon Savannah,”and developing as a Science Park and Area of Innovation.
文摘Amongst all the scientific achievements in the 20th century,no single invention has impacted our lives more profoundly than the transistors,or semiconductors.Since we entered the era of computing in the 1960s,we have witnessed a number of notable transformational shifts such as the transition to personal computers and then mobile era.
文摘张岩,男,1980年出生,江苏新沂人,中共党员,心理学博士,教授,江苏第二师范学院心理学系主任、应用心理学专业负责人,南京师范大学心理学院兼职硕士生导师。担任Computers in Human Behavior等SSCI期刊外审专家,江苏省心理学会理事,江苏省心理学会教学工作委员会副主任委员兼秘书长。主要从事处境不利儿童的心理健康与适应、青少年成瘾行为和教师教育等方面研究。
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
文摘BACKGROUND Internal hernia(IH)is a rare culprit of small bowel obstruction(SBO)with an incidence of<1%.It poses a considerable diagnostic challenge requiring a high index of suspicion to prevent misdiagnosis,improper treatment,and subsequent morbidity and mortality.AIM To determine the clinico-demographic profile,radiological and operative findings,and postoperative course of patients with IH and its association with SBO.METHODS Medical records of 586 patients with features of SBO presenting at a tertiary care centre at Lucknow,India between September 2010 and August 2023 were reviewed.RESULTS Out of 586 patients,7(1.2%)were diagnosed with IH.Among these,4 had congenital IH and 3 had acquired IH.The male-to-female ratio was 4:3.The median age at presentation was 32 years.Contrast-enhanced computed tomography(CECT)was the most reliable investigation for preoperative identification,demonstrating mesenteric whirling and clumped-up bowel loops.Left paraduodenal hernia and transmesenteric hernia occurred with an equal frequency(approximately 43%each).Intraoperatively,one patient was found to have bowel ischemia and one had associated malrotation of gut.During follow-up,no recurrences were reported.CONCLUSION IH,being a rare cause,must be considered as a differential diagnosis for SBO,especially in young patients in their 30s or with unexplained abdominal pain or discomfort post-surgery.A rapid imaging evaluation,preferably with CECT,is necessary to aid in an early diagnosis and prompt intervention,thereby reducing financial burden related to unnecessary investigations and preventing the morbidity and mortality associated with closed-loop obstruction and strangulation of the bowel.
文摘Photon-counting computed tomography(PCCT)represents a significant advancement in pediatric cardiovascular imaging.Traditional CT systems employ energy-integrating detectors that convert X-ray photons into visible light,whereas PCCT utilizes photon-counting detectors that directly transform X-ray photons into electric signals.This direct conversion allows photon-counting detectors to sort photons into discrete energy levels,thereby enhancing image quality through superior noise reduction,improved spatial and contrast resolution,and reduced artifacts.In pediatric applications,PCCT offers substantial benefits,including lower radiation doses,which may help reduce the risk of malignancy in pediatric patients,with perhaps greater potential to benefit those with repeated exposure from a young age.Enhanced spatial resolution facilitates better visualization of small structures,vital for diagnosing congenital heart defects.Additionally,PCCT’s spectral capabilities improve tissue characterization and enable the creation of virtual monoenergetic images,which enhance soft-tissue contrast and potentially reduce contrast media doses.Initial clinical results indicate that PCCT provides superior image quality and diagnostic accuracy compared to conven-tional CT,particularly in challenging pediatric cardiovascular cases.As PCCT technology matures,further research and standardized protocols will be essential to fully integrate it into pediatric imaging practices,ensuring optimized diagnostic outcomes and patient safety.