To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic displ...To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic display ( GHD ) scheme was designed. The grid computing technology was applied to numerically process the different angular projections of an object in distributed-parallel manner to create the corresponding CGHs. The whole treatment of a projection was regarded as a job executed on the grid node machine. The number of jobs which were submitted to grid nodes, therefore, was equal to that of the projections of the object. A Condor-based grid testbed was constructed to verify the feasibility of the GHD scheme, and a graphical user interface (GUI) program and several service modules were developed for it. A 3D terrain model as an example was processed on the testbed. The result showed that the scheme was feasible and able to improve the execution elficiency greatly.展开更多
In amplitude-modulation-type electroholography, the binary-weighted computer-generated hologram(BW-CGH) facilitates the gradation-expressible reconstruction of three-dimensional(3 D) objects. To realize real-time grad...In amplitude-modulation-type electroholography, the binary-weighted computer-generated hologram(BW-CGH) facilitates the gradation-expressible reconstruction of three-dimensional(3 D) objects. To realize real-time gradation-expressible electroholography, we propose an efficient and high-speed method for calculating bit planes consisting of BW-CGHs. The proposed method is implemented on a multiple graphics processing unit(GPU) cluster system comprising 13 GPUs. The proposed BW-CGH method realizes eight-gradation-expressible electroholography at approximately the same calculation speed as that of conventional electroholography based on binary computer-generated holograms. Consequently, we were able to successfully reconstruct a real-time electroholographic 3 D video comprising approximately 180,000 points expressed in eight gradations at 30 frames per second.展开更多
We have been studying various types of computer-generated holograms for three-dimensional (3D) displays both for a real-time holographic video display and a hard copy, or a printed hologram. For the hard copy output...We have been studying various types of computer-generated holograms for three-dimensional (3D) displays both for a real-time holographic video display and a hard copy, or a printed hologram. For the hard copy output, we have developed a direct fringe printer, which is achieved to print over 100 gigapixels computer-generated hologram with 0.44μm pitch. In this paper, we introduce our recent progresses on the rainbow hologram, the cylindrical holograms, and the disk hologram for 3D display.展开更多
We propose a method for color electroholography using a simple red-green-blue (RGB) gradation representa- tion method without controlling the respective brightness of tile reference RGB-colored lights. The proposed ...We propose a method for color electroholography using a simple red-green-blue (RGB) gradation representa- tion method without controlling the respective brightness of tile reference RGB-colored lights. The proposed method uses RGB multiple bit planes comprising RGB binary-weighted computer-generated holograms with various light transmittanees. The object points of a given three-dimensional (3D) object are assigned to RGB nmltiple bit planes according to their RGB gradation levels. The RGB multiple bit planes are sequentially displayed in a tim-division-multiplexe- manner. Consequently, the proposed method yields a color gradation representation of a reconstructed 3D object.展开更多
A new method of fabricating multiple-phase-shifts fiber Bragg grating by CGHsis proposed . The authors present an example of such CGH by which a section multiple-phase-shiftefiber Bragg grating with twoπ/2 phase shif...A new method of fabricating multiple-phase-shifts fiber Bragg grating by CGHsis proposed . The authors present an example of such CGH by which a section multiple-phase-shiftefiber Bragg grating with twoπ/2 phase shifts and grating length L = 21.2 μm was produced. Theauthors describe the production process and finally give an example of a reconstructed fiber gratingwith two phase-shifts.展开更多
Interferometry with computer-generated holograms(CGHs)is a unique solution for the highly accurate testing of large-aperture aspheric mirrors.However,no direct testing method for quantifying the measurement accuracy o...Interferometry with computer-generated holograms(CGHs)is a unique solution for the highly accurate testing of large-aperture aspheric mirrors.However,no direct testing method for quantifying the measurement accuracy of CGHs has been developed.In this study,we developed a methodology for verifying CGH accuracy based on an element that is functionally equivalent to a large-aperture mirror in terms of accuracy verification.The equivalent element decreased the aperture by one or higher orders of magnitude,implying that the mirror could be replaced by a non-CGH technology in a comparison test.In this study,a 281 mm diamond-turned mirror was fabricated as the equivalent element of a 3.5 m aspheric mirror and measured using CGH and LUPHOScan profilometers.Surface error composition and root-mean-square(RMS)density analyses were performed.The methodology verification accuracy of the CGH was 4 nm(RMS)in the low-to mid-frequency bands,with a measured surface accuracy of approximately 10 nm(RMS).This methodology provides a feasible solution for CGH accuracy verification,ensuring high-accuracy and reliable testing of large-aperture aspheric mirrors.展开更多
Freeform surfaces are increasingly used in the design of compact optical systems. Interferometric null test with computer generated hologram (CGH), which has been successfully used in highly accurate test of aspheri...Freeform surfaces are increasingly used in the design of compact optical systems. Interferometric null test with computer generated hologram (CGH), which has been successfully used in highly accurate test of aspheric surfaces, is adopted to test the freeform surfaces. The best fitting sphere of the freeform surface under the test is firstly calculated to quickly estimate the possibility of null test. To decrease the maximum spatial frequency of the null CGH, the position of the CGH and the direction of optical axis are optimized. The estimated maximum spatial frequency of the CGH is 7.8% apart from the optimized one, which shows the validity of the best fitting sphere.展开更多
Interferometric optical testing using computer-generated hologram (CGH) can give highly accurate measurement of aspheric surfaces has been proved. After the system is designed, a phase function is obtained according...Interferometric optical testing using computer-generated hologram (CGH) can give highly accurate measurement of aspheric surfaces has been proved. After the system is designed, a phase function is obtained according to the CGH's surface plane. For the requirement of accuracy, an optimization algorithm that transfers the phase function into a certain mask pattern file is presented in this letter, based on the relationship between the pattern error of CGH and the output wavefront accuracy. Then the writing machine is able to fabricate such a mask with this kind of file. With that mask, an improved procedure on fabrication of phase type CGH is also presented. Interferometrie test results of an aspherie surface show that the whole test system obtains the demanded accuracy.展开更多
A three-dimensional (3D) object reconstruction technique that uses pure-phase computer-generated holograms (CGHs) and a phase-only spatial light modulator (SLM) is proposed. The full parallax CGHs are generated ...A three-dimensional (3D) object reconstruction technique that uses pure-phase computer-generated holograms (CGHs) and a phase-only spatial light modulator (SLM) is proposed. The full parallax CGHs are generated by the point source method and the wave-oriented method without paraxial approximation. Different from conventional CGHs, the pure-phase information on the hologram plane is loaded on the SLM to reconstruct the 3D diffusive objects without considering the reference wave. This technique is more efficient in its utilization of the space-bandwidth product of the SLMs. Numerical simulations and experiments are performed, and the results show that our proposed method can reconstruct 3D diffusive objects successfully.展开更多
Interferometric optical testing using computer-generated hologram (CGH) has provided an approach to highly accurate measurement of aspheric surfaces. While designing the CGH null correctors, we should make them with...Interferometric optical testing using computer-generated hologram (CGH) has provided an approach to highly accurate measurement of aspheric surfaces. While designing the CGH null correctors, we should make them with as small aperture and low spatial frequency as possible, and with no zero slope of phase except at center, for the sake of insuring low risk of substrate figure error and feasibility of fabrication. On the basis of classic optics, a set of equations for calculating the phase function of CGH are obtained. These equations lead us to find the dependence of the aperture and spatial frequency on the axial distance from the tested aspheric surface for the CGH. We also simulate the optical path difference error of the CGH relative to the accuracy of controlling laser spot during fabrication. Meanwhile, we discuss the constraints used to avoid zero slope of phase except at center and give a design result of the CGH for the tested aspheric surface. The results ensure the feasibility of designing a useful CGH to test aspheric surface fundamentally.展开更多
A convex aspheric surface using a computer-generated hologram (CGH) test plate fabricated with novel techniques and equipment is tested. However, the measurement result is not verified via comparison with other meth...A convex aspheric surface using a computer-generated hologram (CGH) test plate fabricated with novel techniques and equipment is tested. However, the measurement result is not verified via comparison with other methods. To verify the accuracy of the measurement, a perfect sphere surface is measured by the following. The measurement result is quantified into four parts: the figure error from the tested spherical surface; the figure error from the reference spherical surface; the error from the hologram; and the adjustment error from misalignment. The measurement result, removed from the later three errors, shows agreement to 4-nm RMS with the test by Zygo interfermeter of the same surface. Analysis of the CGH test showed the overall accuracy of the 4-nm RMS, with 3.9 nm from the test plate figure, 0.5 nm from the hologram, and 0.74 nm from other sources, such as random vibration, various second order effects, and so on. Thus, the measurement accuracy using the proposed CGH could be very high. CGH can therefore be used to measure aspheric surfaces accurately.展开更多
An optimized iterative technique combining the merits of conventional Gerchber-Saxton (G-S) and adaptive-additive (A-A) algorithms to design multilevel computer-generated holograms for the creation of a desirable ...An optimized iterative technique combining the merits of conventional Gerchber-Saxton (G-S) and adaptive-additive (A-A) algorithms to design multilevel computer-generated holograms for the creation of a desirable structured intensity pattern for multiple optical manipulation is theoretically adopted. Optical trap arrays are demonstrated with the help of liquid crystal spatial light modulator and a microscopic optical tweezer system. Additionally, continuous locked-in transport and deflection of microparticles with the generated optical lattice is proven experimentally. The proposed method possesses apparent high efficiency, high uniformity, and dynamic and reconfigurable advantages.展开更多
This Letter proposes to apply full-color computer-generated holograms to the virtual image projection system so that the viewers can comfortably view floating images. Regarding the spatial division and distribution op...This Letter proposes to apply full-color computer-generated holograms to the virtual image projection system so that the viewers can comfortably view floating images. Regarding the spatial division and distribution operation,a modified Gerchberg–Saxton algorithm is used for acquiring the phase infographics, which are input into the spatial light modulator for the reconstructed projection. Such a virtual image projection system could reach the vertical angle of view of 15°–75° and the horizontal angle of view 360°, and the mixed-light modulating proportion contains a 3 m W red light laser, a 2 m W green light laser, and a 2.6 m W blue light laser to achieve the full-color mixed-light proportion with a speckle contrast of 6.65%. The relative diffraction efficiency and root mean square error of the reconstructed image are 95.3% and 0.0524, respectively.展开更多
The popularity of deep learning has boosted computer-generated holography(CGH)as a vibrant research field,particularly physics-driven unsupervised learning.Nevertheless,present unsupervised CGH models have not yet exp...The popularity of deep learning has boosted computer-generated holography(CGH)as a vibrant research field,particularly physics-driven unsupervised learning.Nevertheless,present unsupervised CGH models have not yet explored the potential of generating full-color 3D holograms through a unified framework.In this study,we propose a lightweight multiwavelength network model capable of high-fidelity and efficient full-color hologram generation in both 2D and 3D display,called IncepHoloRGB.The high-speed simultaneous generation of RGB holograms at 191 frames per second(FPS)is based on Inception sampling blocks and multi-wavelength propagation module integrated with depth-traced superimposition,achieving an average structural similarity(SSIM)of 0.88 and peak signal-to-noise ratio(PSNR)of 29.00 on the DIV2K test set in reconstruction.Full-color reconstruction of numerical simulations and optical experiments shows that IncepHoloRGB is versatile to diverse scenarios and can obtain authentic full-color holographic 3D display within a unified network model,paving the way for applications towards real-time dynamic naked-eye 3D display,virtual and augmented reality(VR/AR)systems.展开更多
Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training dataset...Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm.展开更多
In this paper,we present a Deep Neural Network(DNN)based framework that employs Radio Frequency(RF)hologram tensors to locate multiple Ultra-High Frequency(UHF)passive Radio-Frequency Identification(RFID)tags.The RF h...In this paper,we present a Deep Neural Network(DNN)based framework that employs Radio Frequency(RF)hologram tensors to locate multiple Ultra-High Frequency(UHF)passive Radio-Frequency Identification(RFID)tags.The RF hologram tensor exhibits a strong relationship between observation and spatial location,helping to improve the robustness to dynamic environments and equipment.Since RFID data is often marred by noise,we implement two types of deep neural network architectures to clean up the RF hologram tensor.Leveraging the spatial relationship between tags,the deep networks effectively mitigate fake peaks in the hologram tensors resulting from multipath propagation and phase wrapping.In contrast to fingerprinting-based localization systems that use deep networks as classifiers,our deep networks in the proposed framework treat the localization task as a regression problem preserving the ambiguity between fingerprints.We also present an intuitive peak finding algorithm to obtain estimated locations using the sanitized hologram tensors.The proposed framework is implemented using commodity RFID devices,and its superior performance is validated through extensive experiments.展开更多
A phase-only computer-generated holography(CGH) calculation method for stereoscopic holography is proposed in this paper.The two-dimensional(2D) perspective projection views of the three-dimensional(3D) object a...A phase-only computer-generated holography(CGH) calculation method for stereoscopic holography is proposed in this paper.The two-dimensional(2D) perspective projection views of the three-dimensional(3D) object are generated by the computer graphics rendering techniques.Based on these views,a phase-only hologram is calculated by using the Gerchberg–Saxton(GS) iterative algorithm.Comparing with the non-iterative algorithm in the conventional stereoscopic holography,the proposed method improves the holographic image quality,especially for the phase-only hologram encoded from the complex distribution.Both simulation and optical experiment results demonstrate that our proposed method can give higher quality reconstruction comparing with the traditional method.展开更多
An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.I...An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.展开更多
Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being...Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be reconstructed by Fresnel reconstruction algorithm.The three-dimensional windowed Fourier transform is used to filter noise in phase and extract the instantaneous kinematic parameters of the specimen,such as the displacement,velocity and acceleration.An experiment is conducted on a chloroprene rubber latex membrane.Results demonstrate that the proposed method determines the vibration parameters precisely and enjoys many merits.展开更多
The characteristics of optical fiber are quite important for improving the performance of optical fiber communication and sensor systems.Based on the Mach-Zehnder interferometer,a new measuring method is proposed and ...The characteristics of optical fiber are quite important for improving the performance of optical fiber communication and sensor systems.Based on the Mach-Zehnder interferometer,a new measuring method is proposed and the digital holograms between the single mode fibers(SMFs) and specialty double-cladding(DC) fibers are analyzed.The experimental results show that the fringe density can be changed under the conditions of coaxial and off-axial interferences.Therefore it can be used to analyze the optical fiber characteristics including refractive index distribution,fiber modes,phase difference,etc.展开更多
文摘To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic display ( GHD ) scheme was designed. The grid computing technology was applied to numerically process the different angular projections of an object in distributed-parallel manner to create the corresponding CGHs. The whole treatment of a projection was regarded as a job executed on the grid node machine. The number of jobs which were submitted to grid nodes, therefore, was equal to that of the projections of the object. A Condor-based grid testbed was constructed to verify the feasibility of the GHD scheme, and a graphical user interface (GUI) program and several service modules were developed for it. A 3D terrain model as an example was processed on the testbed. The result showed that the scheme was feasible and able to improve the execution elficiency greatly.
基金This work was partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(No.21K11996)I-O DATA Foundation.
文摘In amplitude-modulation-type electroholography, the binary-weighted computer-generated hologram(BW-CGH) facilitates the gradation-expressible reconstruction of three-dimensional(3 D) objects. To realize real-time gradation-expressible electroholography, we propose an efficient and high-speed method for calculating bit planes consisting of BW-CGHs. The proposed method is implemented on a multiple graphics processing unit(GPU) cluster system comprising 13 GPUs. The proposed BW-CGH method realizes eight-gradation-expressible electroholography at approximately the same calculation speed as that of conventional electroholography based on binary computer-generated holograms. Consequently, we were able to successfully reconstruct a real-time electroholographic 3 D video comprising approximately 180,000 points expressed in eight gradations at 30 frames per second.
基金A part of this work was supported by JSPS KAKENHI21760265
文摘We have been studying various types of computer-generated holograms for three-dimensional (3D) displays both for a real-time holographic video display and a hard copy, or a printed hologram. For the hard copy output, we have developed a direct fringe printer, which is achieved to print over 100 gigapixels computer-generated hologram with 0.44μm pitch. In this paper, we introduce our recent progresses on the rainbow hologram, the cylindrical holograms, and the disk hologram for 3D display.
基金supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research(C)(No.15K00153)
文摘We propose a method for color electroholography using a simple red-green-blue (RGB) gradation representa- tion method without controlling the respective brightness of tile reference RGB-colored lights. The proposed method uses RGB multiple bit planes comprising RGB binary-weighted computer-generated holograms with various light transmittanees. The object points of a given three-dimensional (3D) object are assigned to RGB nmltiple bit planes according to their RGB gradation levels. The RGB multiple bit planes are sequentially displayed in a tim-division-multiplexe- manner. Consequently, the proposed method yields a color gradation representation of a reconstructed 3D object.
文摘A new method of fabricating multiple-phase-shifts fiber Bragg grating by CGHsis proposed . The authors present an example of such CGH by which a section multiple-phase-shiftefiber Bragg grating with twoπ/2 phase shifts and grating length L = 21.2 μm was produced. Theauthors describe the production process and finally give an example of a reconstructed fiber gratingwith two phase-shifts.
基金supported by the National Natural Science Foundation of China(62127901,52375471,and 62305333)supported by the National Key Research and Development Program(2022YFB3403405)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019221)Young Elite Scientists Sponsorship Program of CAST(2022QNRC001)Young Elite Scientists Sponsorship Program of Jilin Province(QT202222).
文摘Interferometry with computer-generated holograms(CGHs)is a unique solution for the highly accurate testing of large-aperture aspheric mirrors.However,no direct testing method for quantifying the measurement accuracy of CGHs has been developed.In this study,we developed a methodology for verifying CGH accuracy based on an element that is functionally equivalent to a large-aperture mirror in terms of accuracy verification.The equivalent element decreased the aperture by one or higher orders of magnitude,implying that the mirror could be replaced by a non-CGH technology in a comparison test.In this study,a 281 mm diamond-turned mirror was fabricated as the equivalent element of a 3.5 m aspheric mirror and measured using CGH and LUPHOScan profilometers.Surface error composition and root-mean-square(RMS)density analyses were performed.The methodology verification accuracy of the CGH was 4 nm(RMS)in the low-to mid-frequency bands,with a measured surface accuracy of approximately 10 nm(RMS).This methodology provides a feasible solution for CGH accuracy verification,ensuring high-accuracy and reliable testing of large-aperture aspheric mirrors.
文摘Freeform surfaces are increasingly used in the design of compact optical systems. Interferometric null test with computer generated hologram (CGH), which has been successfully used in highly accurate test of aspheric surfaces, is adopted to test the freeform surfaces. The best fitting sphere of the freeform surface under the test is firstly calculated to quickly estimate the possibility of null test. To decrease the maximum spatial frequency of the null CGH, the position of the CGH and the direction of optical axis are optimized. The estimated maximum spatial frequency of the CGH is 7.8% apart from the optimized one, which shows the validity of the best fitting sphere.
文摘Interferometric optical testing using computer-generated hologram (CGH) can give highly accurate measurement of aspheric surfaces has been proved. After the system is designed, a phase function is obtained according to the CGH's surface plane. For the requirement of accuracy, an optimization algorithm that transfers the phase function into a certain mask pattern file is presented in this letter, based on the relationship between the pattern error of CGH and the output wavefront accuracy. Then the writing machine is able to fabricate such a mask with this kind of file. With that mask, an improved procedure on fabrication of phase type CGH is also presented. Interferometrie test results of an aspherie surface show that the whole test system obtains the demanded accuracy.
基金supported by the Innovation Team Development Program of the Ministry of Education of China (No IRT0606)the National Basic Research Program of China (No 2006CB302901)
文摘A three-dimensional (3D) object reconstruction technique that uses pure-phase computer-generated holograms (CGHs) and a phase-only spatial light modulator (SLM) is proposed. The full parallax CGHs are generated by the point source method and the wave-oriented method without paraxial approximation. Different from conventional CGHs, the pure-phase information on the hologram plane is loaded on the SLM to reconstruct the 3D diffusive objects without considering the reference wave. This technique is more efficient in its utilization of the space-bandwidth product of the SLMs. Numerical simulations and experiments are performed, and the results show that our proposed method can reconstruct 3D diffusive objects successfully.
文摘Interferometric optical testing using computer-generated hologram (CGH) has provided an approach to highly accurate measurement of aspheric surfaces. While designing the CGH null correctors, we should make them with as small aperture and low spatial frequency as possible, and with no zero slope of phase except at center, for the sake of insuring low risk of substrate figure error and feasibility of fabrication. On the basis of classic optics, a set of equations for calculating the phase function of CGH are obtained. These equations lead us to find the dependence of the aperture and spatial frequency on the axial distance from the tested aspheric surface for the CGH. We also simulate the optical path difference error of the CGH relative to the accuracy of controlling laser spot during fabrication. Meanwhile, we discuss the constraints used to avoid zero slope of phase except at center and give a design result of the CGH for the tested aspheric surface. The results ensure the feasibility of designing a useful CGH to test aspheric surface fundamentally.
基金supported by the National Natural Science Foundation of China under Grand No.61137001
文摘A convex aspheric surface using a computer-generated hologram (CGH) test plate fabricated with novel techniques and equipment is tested. However, the measurement result is not verified via comparison with other methods. To verify the accuracy of the measurement, a perfect sphere surface is measured by the following. The measurement result is quantified into four parts: the figure error from the tested spherical surface; the figure error from the reference spherical surface; the error from the hologram; and the adjustment error from misalignment. The measurement result, removed from the later three errors, shows agreement to 4-nm RMS with the test by Zygo interfermeter of the same surface. Analysis of the CGH test showed the overall accuracy of the 4-nm RMS, with 3.9 nm from the test plate figure, 0.5 nm from the hologram, and 0.74 nm from other sources, such as random vibration, various second order effects, and so on. Thus, the measurement accuracy using the proposed CGH could be very high. CGH can therefore be used to measure aspheric surfaces accurately.
基金supported by the National Natural Science Foundation of China (No. 60778045) the Ministry of Science and Technology of China (No.2009DFA52300) for China-Singapore collaborations
文摘An optimized iterative technique combining the merits of conventional Gerchber-Saxton (G-S) and adaptive-additive (A-A) algorithms to design multilevel computer-generated holograms for the creation of a desirable structured intensity pattern for multiple optical manipulation is theoretically adopted. Optical trap arrays are demonstrated with the help of liquid crystal spatial light modulator and a microscopic optical tweezer system. Additionally, continuous locked-in transport and deflection of microparticles with the generated optical lattice is proven experimentally. The proposed method possesses apparent high efficiency, high uniformity, and dynamic and reconfigurable advantages.
基金supported by the National Science Council of Taiwan,China under contract NSC 101-2628-E-224-002-MY3
文摘This Letter proposes to apply full-color computer-generated holograms to the virtual image projection system so that the viewers can comfortably view floating images. Regarding the spatial division and distribution operation,a modified Gerchberg–Saxton algorithm is used for acquiring the phase infographics, which are input into the spatial light modulator for the reconstructed projection. Such a virtual image projection system could reach the vertical angle of view of 15°–75° and the horizontal angle of view 360°, and the mixed-light modulating proportion contains a 3 m W red light laser, a 2 m W green light laser, and a 2.6 m W blue light laser to achieve the full-color mixed-light proportion with a speckle contrast of 6.65%. The relative diffraction efficiency and root mean square error of the reconstructed image are 95.3% and 0.0524, respectively.
基金supports from National Natural Science Foundation of China(Grant No.62205117,52275429)National Key Research and Development Program of China(Grant No.2021YFF0502700)+2 种基金Young Elite Scientists Sponsorship Program by CAST(Grant No.2022QNRC001)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202206)Hubei Natural Science Foundation Innovative Research Group Project(2024AFA025).
文摘The popularity of deep learning has boosted computer-generated holography(CGH)as a vibrant research field,particularly physics-driven unsupervised learning.Nevertheless,present unsupervised CGH models have not yet explored the potential of generating full-color 3D holograms through a unified framework.In this study,we propose a lightweight multiwavelength network model capable of high-fidelity and efficient full-color hologram generation in both 2D and 3D display,called IncepHoloRGB.The high-speed simultaneous generation of RGB holograms at 191 frames per second(FPS)is based on Inception sampling blocks and multi-wavelength propagation module integrated with depth-traced superimposition,achieving an average structural similarity(SSIM)of 0.88 and peak signal-to-noise ratio(PSNR)of 29.00 on the DIV2K test set in reconstruction.Full-color reconstruction of numerical simulations and optical experiments shows that IncepHoloRGB is versatile to diverse scenarios and can obtain authentic full-color holographic 3D display within a unified network model,paving the way for applications towards real-time dynamic naked-eye 3D display,virtual and augmented reality(VR/AR)systems.
基金We are grateful for financial supports from National Natural Science Foundation of China(62035003,61775117)China Postdoctoral Science Foundation(BX2021140)Tsinghua University Initiative Scientific Research Program(20193080075).
文摘Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm.
基金supported in part by the U.S.National Science Foundation(NSF)under Grants ECCS-2245608 and ECCS-2245607。
文摘In this paper,we present a Deep Neural Network(DNN)based framework that employs Radio Frequency(RF)hologram tensors to locate multiple Ultra-High Frequency(UHF)passive Radio-Frequency Identification(RFID)tags.The RF hologram tensor exhibits a strong relationship between observation and spatial location,helping to improve the robustness to dynamic environments and equipment.Since RFID data is often marred by noise,we implement two types of deep neural network architectures to clean up the RF hologram tensor.Leveraging the spatial relationship between tags,the deep networks effectively mitigate fake peaks in the hologram tensors resulting from multipath propagation and phase wrapping.In contrast to fingerprinting-based localization systems that use deep networks as classifiers,our deep networks in the proposed framework treat the localization task as a regression problem preserving the ambiguity between fingerprints.We also present an intuitive peak finding algorithm to obtain estimated locations using the sanitized hologram tensors.The proposed framework is implemented using commodity RFID devices,and its superior performance is validated through extensive experiments.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328803)the National High Technology Research and Development Program of China(Grant Nos.2013AA013904 and 2015AA016301)
文摘A phase-only computer-generated holography(CGH) calculation method for stereoscopic holography is proposed in this paper.The two-dimensional(2D) perspective projection views of the three-dimensional(3D) object are generated by the computer graphics rendering techniques.Based on these views,a phase-only hologram is calculated by using the Gerchberg–Saxton(GS) iterative algorithm.Comparing with the non-iterative algorithm in the conventional stereoscopic holography,the proposed method improves the holographic image quality,especially for the phase-only hologram encoded from the complex distribution.Both simulation and optical experiment results demonstrate that our proposed method can give higher quality reconstruction comparing with the traditional method.
基金Project supported by the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020(Grant No.Z201100004320006).
文摘An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.
基金supported by the National Natural Science Foundation of China (10772171 and 10732080)the National Basic Research Program of China (2007CB936803)
文摘Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be reconstructed by Fresnel reconstruction algorithm.The three-dimensional windowed Fourier transform is used to filter noise in phase and extract the instantaneous kinematic parameters of the specimen,such as the displacement,velocity and acceleration.An experiment is conducted on a chloroprene rubber latex membrane.Results demonstrate that the proposed method determines the vibration parameters precisely and enjoys many merits.
基金supported by the Key Program of the National Natural Science Foundation of China (No.60937003)the Science and Technology Commission of Shanghai Municipality (STCSM) (No.0952nm06800)
文摘The characteristics of optical fiber are quite important for improving the performance of optical fiber communication and sensor systems.Based on the Mach-Zehnder interferometer,a new measuring method is proposed and the digital holograms between the single mode fibers(SMFs) and specialty double-cladding(DC) fibers are analyzed.The experimental results show that the fringe density can be changed under the conditions of coaxial and off-axial interferences.Therefore it can be used to analyze the optical fiber characteristics including refractive index distribution,fiber modes,phase difference,etc.