This paper focuses on the design of fixtures for NP2 and NP4 cylinder heads on a horizontal machining center of flexible machining automatic lines.It began with an analysis of the diagrams of part processing and worki...This paper focuses on the design of fixtures for NP2 and NP4 cylinder heads on a horizontal machining center of flexible machining automatic lines.It began with an analysis of the diagrams of part processing and working procedure which formed the basis for the design of the processing technology scheme,a selection of suitable machine tools,and the setting of processing parameters.Fixtures tailored to the chosen machine tools were then designed to meet the processing requirements.Additional aspects of the project included the design of part drawings,calculation of working time quota,design of auxiliary guides,support clamping,and hydraulic circuits,all aimed at fulfilling practical production requirements.展开更多
Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle...Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.展开更多
The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtaine...The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.展开更多
Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is ...Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is discussed, and its advantages are also emphasized.Furthermore, some specific methods are provided, such as the selection of fixture components, the determination and input of parameters, drawing representative model,and the creation of drawing. Finally an applied example of strcture parametric design is presented.展开更多
Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate vario...Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.展开更多
Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice mo...Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.展开更多
Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced...Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.展开更多
The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the...The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.展开更多
In order to realize the agility of the fixture design, such as reconfigurability, rescalability and reusability, fixture structure is function unit based decomposed from a fire new point of view. Which makes it easy f...In order to realize the agility of the fixture design, such as reconfigurability, rescalability and reusability, fixture structure is function unit based decomposed from a fire new point of view. Which makes it easy for agile fixture to be reconfigured and modified. Thereby, the base of case based agile fixture design system info is established.Whole case based agile fixture design model is presented. In which, three modules are added relative to the other models, including case matching of fixture planning module, conflict arbitration module and agile fixture case modify module. The three modules could solve the previous problem that the experience and result are difficult to be reused in the process of design.Two key techniques in the process of the agile fixture design, the evaluation of case similarity, and restriction based conflict arbitration, are listed. And some methods are presented to evaluate the similarity and clear up the conflict.展开更多
Fully human antibodies have minimal immunogenicity and safety profiles.At present,most potential antibody drugs in clinical trials are humanized or fully human.Human antibodies are mostly generated using the phage dis...Fully human antibodies have minimal immunogenicity and safety profiles.At present,most potential antibody drugs in clinical trials are humanized or fully human.Human antibodies are mostly generated using the phage display method(in vitro)or by transgenic mice(in vivo);other methods include B lymphocyte immortalization,human–human hybridoma,and single-cell polymerase chain reaction.Here,we describe a structure-based computer-aided de novo design technology for human antibody generation.Based on the complex structure of human epidermal growth factor receptor 2(HER2)/Herceptin,we first designed six short peptides targeting the potential epitope of HER2 recognized by Herceptin.Next,these peptides were set as complementarity determining regions in a suitable immunoglobulin frame,giving birth to a novel anti-HER2 antibody named "HF,"which possessed higher affinity and more effective anti-tumor activity than Herceptin.Our work offers a useful tool for the quick design and selection of novel human antibodies for basic mechanical research as well as for imaging and clinical applications in immune-related diseases,such as cancer and infectious diseases.展开更多
To support modular fixture assembly design in virtual environment,a multi-view based modular fixture virtual assembly model is proposed.Instead of squeezing all assembly related information into a single model,three c...To support modular fixture assembly design in virtual environment,a multi-view based modular fixture virtual assembly model is proposed.Instead of squeezing all assembly related information into a single model,three complementary views of assembly model,element information,function and structure,and assembly relationship are proposed to be used.The first view contains the detailed element information,while the other two explicitly capture the hierarchical function relationships and mating relationships respectively.These views are complementary in the sense that each view only contains a specific aspect of assembly related information while together they include required assembly related information.The proposed assembly model is specialized to accommodate the features of modular fixture virtual assembly design and applied in our developed prototype system.展开更多
Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to...Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to search for the appropriate structure or composition of the product with desired property, which is an optimization problem. In this paper, a global optimization method of using the a BB algorithm to solve the backward problem is presented. In particular, a convex lower bounding function is constructed for the objective function formulated with BP-NN model, and the calculation of the key parameter a is implemented by recurring to the interval Hessian matrix of the objective function. Two case studies involving the design of dopamine β-hydroxylase (DβH) inhibitors and linear low density polyethylene (LLDPE) nano composites are investigated using the proposed method.展开更多
Fixture is an important manufacturing activity. A fixture design system based on case-based reasoning (CBR) is proposed in this paper. A new method of case representation on the basis of fixture function is presented,...Fixture is an important manufacturing activity. A fixture design system based on case-based reasoning (CBR) is proposed in this paper. A new method of case representation on the basis of fixture function is presented, where the case representation is constituted of workpiece knowledge, processing feature knowledge, and fixture feature knowledge. Running the prototype system shows that the knowledge representation method, using cases, s a better way to transform and explain the design knowledge.展开更多
According to the technique requests of the brake caliper in the process of production, a special fixture of float brake caliper has been developed based on 3 D design in this paper. The development process and verifie...According to the technique requests of the brake caliper in the process of production, a special fixture of float brake caliper has been developed based on 3 D design in this paper. The development process and verified data from 3D modeling and kinematics simulation for this special fixture show that this 3D-designed process can conveniently forecast the assembly interference of the fixture and accurately add the mass of lead brick before the prototype is made. In this way the flutter caused by the unbalanced lathe fixture can be eliminated and the precision of run-out tolerance in cylinder hole compared with machine tool spindle can be improved, thus the processing quality of the cylinder hole in a brake caliper can be greatly guaranteed.展开更多
A vital part of enhancing the ability of students to learn about advanced fabrication techniques is identifying the barriers to the student’s entry and excelling in the manufacturing field. In the Manufacturing and M...A vital part of enhancing the ability of students to learn about advanced fabrication techniques is identifying the barriers to the student’s entry and excelling in the manufacturing field. In the Manufacturing and Mechanical Technology fields, there exists an intimidating experience gap or barrier between professionals and novice students. The students’ participation in the design and fabrication of a fixture for manufacturing a mechanical part will aid in eliminating this barrier by making fuel cell’s bipolar plates production accessible to inexperienced technology students. The process of manufacturing a fixture for the production of hydrogen fuel cell and hydrogen purifier plates required a careful planning and step-by-step methodological implementation. Through the use of our designed fixture, it is now possible to teach students how to use a CNC milling machine with relative ease while also allowing for precision part machining. The setup of the fixture allows students to observe the necessary measures to properly machine a part while also teaching them the benefits of fixtures in the manufacturing industry. In summary, the purpose of this paper is to provide the students with applied learning experience through involving them in the design and fabrication of a multi-disciplinary mechanical fixture and the utilization of practice oriented teaching resources in a full scale learning environment.展开更多
Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual sk...Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual skill. Here we propose a computer-aided method for fabricating finger pros-theses to save time and allow fabrications that do not require considerable manual skill. In this method, the dimensions of a patient’s healthy finger on the contralateral hand are first measured using a caliper. Using these dimensions, a three-dimensional model is constructed for fabricating a prosthesis for the patient’s impaired finger. Using the 3D model, a mold is designed using 3D modeling tools and a computer-aided design system. The resulting mold is then fabricated using a 3D printer. A finger prosthesis is fabricated by pouring silicone resin into the mold. A finger prosthesis for a volunteer was experimentally fabricated according to the proposed method. To evaluate the size and shape of the finger prosthesis, the difference between the finger prosthesis and the original finger of the volunteer was analyzed. Because the average difference between them was 0.25 mm, it was concluded that the proposed method could be used to fabricate a finger prosthesis of adequate size and shape.展开更多
Dental caries,a chronic disease characterized by tooth decay,occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria,especially Streptococcus mutans,because of its acidog...Dental caries,a chronic disease characterized by tooth decay,occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria,especially Streptococcus mutans,because of its acidogenic,aciduric,and biofilm-forming capabilities.Developing novel targeted anti-virulence agents is always a focal point in caries control to overcome the limitations of conventional anti-virulence agents.The current study represents an up-to-date review of in silico approaches of drug design against dental caries,which have emerged more and more powerful complementary to biochemical attempts.Firstly,we categorize the in silico approaches into computer-aided drug design(CADD)and AI-assisted drug design(AIDD)and highlight the specific methods and models they contain respectively.Subsequently,we detail the design of anti-virulence drugs targeting single or multiple cariogenic virulence targets of S.mutans,such as glucosyltransferases(Gtfs),antigen I/II(AgI/II),sortase A(SrtA),the VicRK signal transduction system and superoxide dismutases(SODs).Finally,we outline the current opportunities and challenges encountered in this field to aid future endeavors and applications of CADD and AIDD in anti-virulence drug design.展开更多
The article is to study the development of computer-aided design of X-ray microtomography—the device for investigating the structure and construction of three-dimensional images of organic and inorganic objects on th...The article is to study the development of computer-aided design of X-ray microtomography—the device for investigating the structure and construction of three-dimensional images of organic and inorganic objects on the basis of shadow projections. This article provides basic information regarding CAD of X-ray microtomography and a scheme consisting of three levels. The article also shows basic relations of X-ray computed tomography, the generalized scheme of an X-ray microtomographic scanner. The methods of X-ray imaging of the spatial microstructure and morphometry of materials are described. The main characteristics of an X-ray microtomographic scanner, the X-ray source, X-ray optical elements and mechanical components of the positioning system are shown. The block scheme and software functional scheme for intelligent neural network system of analysis of the internal microstructure of objects are presented. The method of choice of design parameters of CAD of X-ray microtomography aims at improving the quality of design and reducing costs of it. It is supposed to reduce the design time and eliminate the growing number of engineers involved in development and construction of X-ray microtomographic scanners.展开更多
With the progress and continuous improvement of numerical control process technology control processing technology, intelligent numerical control processing technology has obviously improved the production and process...With the progress and continuous improvement of numerical control process technology control processing technology, intelligent numerical control processing technology has obviously improved the production and processing efficiency and quality of enterprises. However, when the traditional fixture is used in NC machining, the automation and production efficiency of the whole process will be reduced. In order to solve this problem, the relevant researchers have been constantly improving the design of processing technology and fixture, through the design of reasonable auxiliary tools, in order to meet the needs of enterprise production and processing, shorten the clamping, positioning time, so as to improve the production efficiency of enterprises. Through previous experience can be learned that the optimization of processing technology and fixture design can reduce production costs, improve the quality of products. This paper mainly discusses some problems in the process flow of NC machining and fixture design.展开更多
Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of g...Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of geometric accuracy and surface finish, can be enhanced by using the product manufacturing information(PMI) stored in the neutral standard for the exchange of product model data(STEP) file, thereby integrating design and manufacturing. The present paper proposes a unique fixture design approach, to extract the geometry information from STEP application protocol(AP) 242 files of computer aided design(CAD) models, for providing automatic suggestions of locator positions and clamping surfaces. Automatic feature extraction software "FiXplan", developed using the programming language C#, is used to extract the part feature, dimension and geometry information. The information from the STEP AP 242 file is deduced using geometric reasoning techniques, which in turn is utilized for fixture planning. The developed software is observed to be adept in identifying the primary, secondary, and tertiary locating faces and locator position configurations of prismatic components. Structural analysis of the prismatic part under different locator positions was performed using commercial finite element method software, ABAQUS, and the optimized locator position was identified on the basis of minimum deformation of the workpiece.The area-ratio(base locator enclosed area(%)/work piece base area(%)) for the ideal locator configuration was observed as 33%. Experiments were conducted on a prismatic workpiece using a specially designed fixture, for different locator configurations. The surface roughness and waviness of the machined surfaces were analysed using an Alicona non-contact optical profilometer. The best surface characteristics were obtained for the surface machined under the ideal locator positions having an area-ratio of 33%, thus validating the predicted numerical results. The efficiency, capability and applicability of the developed software is demonstrated for the finishing operation of a sensor cover – a typical prismatic component having applications in the naval industry, under different locator configurations.The best results were obtained under the proposed ideal locator configuration of area-ratio 33%.展开更多
文摘This paper focuses on the design of fixtures for NP2 and NP4 cylinder heads on a horizontal machining center of flexible machining automatic lines.It began with an analysis of the diagrams of part processing and working procedure which formed the basis for the design of the processing technology scheme,a selection of suitable machine tools,and the setting of processing parameters.Fixtures tailored to the chosen machine tools were then designed to meet the processing requirements.Additional aspects of the project included the design of part drawings,calculation of working time quota,design of auxiliary guides,support clamping,and hydraulic circuits,all aimed at fulfilling practical production requirements.
基金The National Natural Science Foundation of China(No.71271053)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_082)
文摘Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.
文摘The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.
文摘Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is discussed, and its advantages are also emphasized.Furthermore, some specific methods are provided, such as the selection of fixture components, the determination and input of parameters, drawing representative model,and the creation of drawing. Finally an applied example of strcture parametric design is presented.
基金financially supported by the FDCT Project 0029/2018/A1the University of Macao Research Grants(MYRG2019-00041-ICMS)performed in part at the High-Performance Computing Cluster(HPCC)which is supported by Information and Communication Technology Office(ICTO)of the University of Macao。
文摘Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists,which is time-consuming,high cost and waste materials.This research aims to integrate various computational tools,including machine learning,molecular dynamic simulation and physiologically based absorption modeling(PBAM),to enhance andrographolide(AG)/cyclodextrins(CDs)formulation design.The light GBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy.AG/γ-CD inclusion complexes showed the strongest binding affinity,which was experimentally validated by the phase solubility study.The molecular dynamic simulation was used to investigate the inclusion mechanism between AG andγ-CD,which was experimentally characterized by DSC,FTIR and NMR techniques.PBAM was applied to simulate the in vivo behavior of the formulations,which were validated by cell and animal experiments.Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate(TPGS)significantly increased the intracellular uptake of AG in MDCKMDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers.The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills,respectively.In conclusion,this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility,dissolution rate and bioavailability.The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.
文摘Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.
基金The study was financially supported by the key project of Science and Technology Commission of Shanghai Local Gov-ernment (No. 015211010), the National Natural Science Foundation of China (No. 50171038) and the China-Belgium bi-lateral project (No. 2001-242).
文摘Suitable optimization and simulation were performed using a powerful software package with a mature database as well as modem measurement facilities, which led to the successful designing and manufacturing of advanced steels. In the course of designing, the composition of a large section of prehardened mold steel for plastics was estimated so as to lower the quantities of oxide inclusions to change the type of carbides and to raise the machinability. The composition and process were adjusted to obtain satisfactory surface quality for the prevailing galvanization in transformation-induced plasticity (TRIP) steel. The refuting process of low-carbon steel was simulated in the light of both Thermo-Calc and Factsage. Thermodynamic and kinetic analyses were always conducted during the test and the procedure.
文摘The general computer-aided design (CAD) software cannot meet the mould design requirement of the autoclave process for composites, because many parameters such as temperature and pressure should be considered in the mould design process, in addition to the material and geometry of the part. A framed-mould computer-aided design system (FMCAD) used in the autoclave moulding process is proposed in this paper. A function model of the software is presented, in which influence factors such as part structure, mould structure, and process parameters are considered; a design model of the software is established using object oriented (O-O) technology to integrate the stiffness calculation, temperature field calculation, and deformation field calculation of mould in the design, and in the design model, a hybrid model of mould based on calculation feature and form feature is presented to support those calculations. A prototype system is developed, in which a mould design process wizard is built to integrate the input information, calculation, analysis, data storage, display, and design results of mould design. Finally, three design examples are used to verify the prototype.
文摘In order to realize the agility of the fixture design, such as reconfigurability, rescalability and reusability, fixture structure is function unit based decomposed from a fire new point of view. Which makes it easy for agile fixture to be reconfigured and modified. Thereby, the base of case based agile fixture design system info is established.Whole case based agile fixture design model is presented. In which, three modules are added relative to the other models, including case matching of fixture planning module, conflict arbitration module and agile fixture case modify module. The three modules could solve the previous problem that the experience and result are difficult to be reused in the process of design.Two key techniques in the process of the agile fixture design, the evaluation of case similarity, and restriction based conflict arbitration, are listed. And some methods are presented to evaluate the similarity and clear up the conflict.
基金This work was supported by grants from the National Sciences Fund(31370938 and 81272528)The Fund(81272528)offered experiment material and collected the data for analysisThe Fund(31370938)helped design the study and was helpful in preparing the manuscript.
文摘Fully human antibodies have minimal immunogenicity and safety profiles.At present,most potential antibody drugs in clinical trials are humanized or fully human.Human antibodies are mostly generated using the phage display method(in vitro)or by transgenic mice(in vivo);other methods include B lymphocyte immortalization,human–human hybridoma,and single-cell polymerase chain reaction.Here,we describe a structure-based computer-aided de novo design technology for human antibody generation.Based on the complex structure of human epidermal growth factor receptor 2(HER2)/Herceptin,we first designed six short peptides targeting the potential epitope of HER2 recognized by Herceptin.Next,these peptides were set as complementarity determining regions in a suitable immunoglobulin frame,giving birth to a novel anti-HER2 antibody named "HF,"which possessed higher affinity and more effective anti-tumor activity than Herceptin.Our work offers a useful tool for the quick design and selection of novel human antibodies for basic mechanical research as well as for imaging and clinical applications in immune-related diseases,such as cancer and infectious diseases.
文摘To support modular fixture assembly design in virtual environment,a multi-view based modular fixture virtual assembly model is proposed.Instead of squeezing all assembly related information into a single model,three complementary views of assembly model,element information,function and structure,and assembly relationship are proposed to be used.The first view contains the detailed element information,while the other two explicitly capture the hierarchical function relationships and mating relationships respectively.These views are complementary in the sense that each view only contains a specific aspect of assembly related information while together they include required assembly related information.The proposed assembly model is specialized to accommodate the features of modular fixture virtual assembly design and applied in our developed prototype system.
文摘Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to search for the appropriate structure or composition of the product with desired property, which is an optimization problem. In this paper, a global optimization method of using the a BB algorithm to solve the backward problem is presented. In particular, a convex lower bounding function is constructed for the objective function formulated with BP-NN model, and the calculation of the key parameter a is implemented by recurring to the interval Hessian matrix of the objective function. Two case studies involving the design of dopamine β-hydroxylase (DβH) inhibitors and linear low density polyethylene (LLDPE) nano composites are investigated using the proposed method.
文摘Fixture is an important manufacturing activity. A fixture design system based on case-based reasoning (CBR) is proposed in this paper. A new method of case representation on the basis of fixture function is presented, where the case representation is constituted of workpiece knowledge, processing feature knowledge, and fixture feature knowledge. Running the prototype system shows that the knowledge representation method, using cases, s a better way to transform and explain the design knowledge.
文摘According to the technique requests of the brake caliper in the process of production, a special fixture of float brake caliper has been developed based on 3 D design in this paper. The development process and verified data from 3D modeling and kinematics simulation for this special fixture show that this 3D-designed process can conveniently forecast the assembly interference of the fixture and accurately add the mass of lead brick before the prototype is made. In this way the flutter caused by the unbalanced lathe fixture can be eliminated and the precision of run-out tolerance in cylinder hole compared with machine tool spindle can be improved, thus the processing quality of the cylinder hole in a brake caliper can be greatly guaranteed.
文摘A vital part of enhancing the ability of students to learn about advanced fabrication techniques is identifying the barriers to the student’s entry and excelling in the manufacturing field. In the Manufacturing and Mechanical Technology fields, there exists an intimidating experience gap or barrier between professionals and novice students. The students’ participation in the design and fabrication of a fixture for manufacturing a mechanical part will aid in eliminating this barrier by making fuel cell’s bipolar plates production accessible to inexperienced technology students. The process of manufacturing a fixture for the production of hydrogen fuel cell and hydrogen purifier plates required a careful planning and step-by-step methodological implementation. Through the use of our designed fixture, it is now possible to teach students how to use a CNC milling machine with relative ease while also allowing for precision part machining. The setup of the fixture allows students to observe the necessary measures to properly machine a part while also teaching them the benefits of fixtures in the manufacturing industry. In summary, the purpose of this paper is to provide the students with applied learning experience through involving them in the design and fabrication of a multi-disciplinary mechanical fixture and the utilization of practice oriented teaching resources in a full scale learning environment.
文摘Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual skill. Here we propose a computer-aided method for fabricating finger pros-theses to save time and allow fabrications that do not require considerable manual skill. In this method, the dimensions of a patient’s healthy finger on the contralateral hand are first measured using a caliper. Using these dimensions, a three-dimensional model is constructed for fabricating a prosthesis for the patient’s impaired finger. Using the 3D model, a mold is designed using 3D modeling tools and a computer-aided design system. The resulting mold is then fabricated using a 3D printer. A finger prosthesis is fabricated by pouring silicone resin into the mold. A finger prosthesis for a volunteer was experimentally fabricated according to the proposed method. To evaluate the size and shape of the finger prosthesis, the difference between the finger prosthesis and the original finger of the volunteer was analyzed. Because the average difference between them was 0.25 mm, it was concluded that the proposed method could be used to fabricate a finger prosthesis of adequate size and shape.
基金supported by the Sichuan Science and Technology Program,China(Grant Nos.:2023ZYD0105 and 2023YFS0343)。
文摘Dental caries,a chronic disease characterized by tooth decay,occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria,especially Streptococcus mutans,because of its acidogenic,aciduric,and biofilm-forming capabilities.Developing novel targeted anti-virulence agents is always a focal point in caries control to overcome the limitations of conventional anti-virulence agents.The current study represents an up-to-date review of in silico approaches of drug design against dental caries,which have emerged more and more powerful complementary to biochemical attempts.Firstly,we categorize the in silico approaches into computer-aided drug design(CADD)and AI-assisted drug design(AIDD)and highlight the specific methods and models they contain respectively.Subsequently,we detail the design of anti-virulence drugs targeting single or multiple cariogenic virulence targets of S.mutans,such as glucosyltransferases(Gtfs),antigen I/II(AgI/II),sortase A(SrtA),the VicRK signal transduction system and superoxide dismutases(SODs).Finally,we outline the current opportunities and challenges encountered in this field to aid future endeavors and applications of CADD and AIDD in anti-virulence drug design.
文摘The article is to study the development of computer-aided design of X-ray microtomography—the device for investigating the structure and construction of three-dimensional images of organic and inorganic objects on the basis of shadow projections. This article provides basic information regarding CAD of X-ray microtomography and a scheme consisting of three levels. The article also shows basic relations of X-ray computed tomography, the generalized scheme of an X-ray microtomographic scanner. The methods of X-ray imaging of the spatial microstructure and morphometry of materials are described. The main characteristics of an X-ray microtomographic scanner, the X-ray source, X-ray optical elements and mechanical components of the positioning system are shown. The block scheme and software functional scheme for intelligent neural network system of analysis of the internal microstructure of objects are presented. The method of choice of design parameters of CAD of X-ray microtomography aims at improving the quality of design and reducing costs of it. It is supposed to reduce the design time and eliminate the growing number of engineers involved in development and construction of X-ray microtomographic scanners.
文摘With the progress and continuous improvement of numerical control process technology control processing technology, intelligent numerical control processing technology has obviously improved the production and processing efficiency and quality of enterprises. However, when the traditional fixture is used in NC machining, the automation and production efficiency of the whole process will be reduced. In order to solve this problem, the relevant researchers have been constantly improving the design of processing technology and fixture, through the design of reasonable auxiliary tools, in order to meet the needs of enterprise production and processing, shorten the clamping, positioning time, so as to improve the production efficiency of enterprises. Through previous experience can be learned that the optimization of processing technology and fixture design can reduce production costs, improve the quality of products. This paper mainly discusses some problems in the process flow of NC machining and fixture design.
基金Department of Science and Technology,Government of India for providing financial support under the scheme FIST(No.SR/FST/ETI-388/2015)。
文摘Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of geometric accuracy and surface finish, can be enhanced by using the product manufacturing information(PMI) stored in the neutral standard for the exchange of product model data(STEP) file, thereby integrating design and manufacturing. The present paper proposes a unique fixture design approach, to extract the geometry information from STEP application protocol(AP) 242 files of computer aided design(CAD) models, for providing automatic suggestions of locator positions and clamping surfaces. Automatic feature extraction software "FiXplan", developed using the programming language C#, is used to extract the part feature, dimension and geometry information. The information from the STEP AP 242 file is deduced using geometric reasoning techniques, which in turn is utilized for fixture planning. The developed software is observed to be adept in identifying the primary, secondary, and tertiary locating faces and locator position configurations of prismatic components. Structural analysis of the prismatic part under different locator positions was performed using commercial finite element method software, ABAQUS, and the optimized locator position was identified on the basis of minimum deformation of the workpiece.The area-ratio(base locator enclosed area(%)/work piece base area(%)) for the ideal locator configuration was observed as 33%. Experiments were conducted on a prismatic workpiece using a specially designed fixture, for different locator configurations. The surface roughness and waviness of the machined surfaces were analysed using an Alicona non-contact optical profilometer. The best surface characteristics were obtained for the surface machined under the ideal locator positions having an area-ratio of 33%, thus validating the predicted numerical results. The efficiency, capability and applicability of the developed software is demonstrated for the finishing operation of a sensor cover – a typical prismatic component having applications in the naval industry, under different locator configurations.The best results were obtained under the proposed ideal locator configuration of area-ratio 33%.