The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicle...The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.展开更多
This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully i...This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully integrated optimisation framework is developed accordingly,combining a single-objective Genetic Algorithm(GA)for design parameter generation,Computer-Aided Geometric Design(CAGD)for the creation of hull geometries and associated fluid domains,and a Reynolds-Averaged Navier-Stokes(RANS)solver for evaluating hydrodynamic performance metrics.This unified approach eliminates manual intervention,enabling automated determination of optimal hull configurations.Three distinct optimisation problems are addressed using the proposed methodology.First,the drag minimisation of a reference afterbody geometry(A1)at zero angle of attack is performed under constraints of fixed length and internal volume for various flow velocities spanning the range from 0.5 to 15 m/s.Second,the lift-to-drag ratio of A1 is maximised at a 6°angle of attack,maintaining constant total length and internal volume.Third,delivered power is minimised for A1 at a 0°angle of attack.The comparative analysis of results from all three optimisation cases reveals hull shapes with practical design significance.Notably,the shape optimised for minimum delivered power outperforms the other two across a range of velocities.Specifically,it achieves reductions in required power by 7.6%,7.8%,10.2%,and 13.04%at velocities of 0.5,1.0,1.5,and 2.152 m/s,respectively.展开更多
为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Envi...为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。展开更多
基金funded by the“Hundred Outstanding Talents”Support Program of Jining University,a provincial-level key project in the field of natural sciences,grant number 2023ZYRC23Jining Key R&D Program(Soft Science)Project,No.2024JNZC010Shandong Province Key Research and Development Program(Technology-Based Small and Medium-sized Enterprises Innovation Capability Improvement)Project No.2025TSGCCZZB0679.
文摘The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution.Beyond the promotion of new energy vehicles,reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions.This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles.A parametric vehicle model was developed,and computational fluid dynamics(CFD)simulations were conducted to analyse variations in the drag coefficient(C_(d))and pressure distribution across different design configurations.The results reveal that the optimal aerodynamic performance—characterized by a minimized drag coefficient—is achieved with the following parameter settings:engine hood angle(α)of 15°,windshield angle(β)of 25°,rear window angle(γ)of 40°,rear upwards tail lift angle(θ)of 10°,ground clearance(d)of 100 mm,and side edge angle(s)of 5°.These findings offer valuable guidance for the aerodynamic optimization of vehicle body design and contribute to strategies aimed at energy conservation and emission reduction in the automotive sector.
文摘This study presents a comparative analysis of optimisation strategies for designing hull shapes of Autonomous Underwater Vehicles(AUVs),paying special attention to drag,lift-to-drag ratio,and delivered power.A fully integrated optimisation framework is developed accordingly,combining a single-objective Genetic Algorithm(GA)for design parameter generation,Computer-Aided Geometric Design(CAGD)for the creation of hull geometries and associated fluid domains,and a Reynolds-Averaged Navier-Stokes(RANS)solver for evaluating hydrodynamic performance metrics.This unified approach eliminates manual intervention,enabling automated determination of optimal hull configurations.Three distinct optimisation problems are addressed using the proposed methodology.First,the drag minimisation of a reference afterbody geometry(A1)at zero angle of attack is performed under constraints of fixed length and internal volume for various flow velocities spanning the range from 0.5 to 15 m/s.Second,the lift-to-drag ratio of A1 is maximised at a 6°angle of attack,maintaining constant total length and internal volume.Third,delivered power is minimised for A1 at a 0°angle of attack.The comparative analysis of results from all three optimisation cases reveals hull shapes with practical design significance.Notably,the shape optimised for minimum delivered power outperforms the other two across a range of velocities.Specifically,it achieves reductions in required power by 7.6%,7.8%,10.2%,and 13.04%at velocities of 0.5,1.0,1.5,and 2.152 m/s,respectively.
文摘为提升低空风切变预报精度,本文综合运用欧洲中期天气预报中心第五代再分析资料[European Centre for Medium-Range Weather Forecasts(ECMWF)fifth-generation reanalysis data,ERA5]和美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)的FNL全球再分析资料(Final Operational Global Analysis)、先进星载热发射和反射辐射仪全球数字高程模型以及兰州中川机场的实况观测资料,采用中尺度数值天气预报模式(Weather Research and Forecasting Model,WRF)、WRF结合计算流体动力学(Computational Fluid Dynamics,CFD)方法、长短期神经网络(Long Short-Term Memory,LSTM)方法,对2021年4月15-16日兰州中川机场的两次风切变过程进行模拟分析。结果表明:(1)在小于1 km的网格中使用大涡模拟,WRF模式在单个站点风速模拟任务中表现更好,但在近地面水平风场风速模拟效果上,不如WRF模式结合计算流体力学模型方案;(2)对于飞机降落过程中遭遇的两次低空风切变的模拟,WRF-LES和WRF-CFD两种模式都可以模拟出第一次低空风切变,而第二次受传入模式的WRF风速数据值较小的影响,两种模式风速差都没有达到阈值,需要在后续工作中进一步验证;(3)低风速条件(6 m·s^(-1))下,基于LSTM的单变量风速预测模型平均绝对误差基本维持在0.59 m·s^(-1),能较好地把握不同地形与环流背景条件下风速变化的非线性关系,虽然受到WRF误差和观测要素不全的限制,多变量风速预测能在保证平均绝对百分比误差小于6.60%的情况下,以更高的计算效率和泛化能力实现风速预测。本文不仅验证了WRF-CFD和WRF-LES耦合方案在风场和低空风切变预报中的差异,还探讨了基于LSTM的风速预测的可行性和准确性,期望为提高风场模拟精度,缩短精细风场模拟时间提供新的视角和方法。