With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the re...With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the requirements-tasking-effectscycle from one day to hours, the various resources of the wholedata acquisition chain (including satellites, ground stations, dataprocessing centers, users, etc.) should be taken into an overallconsideration, and the traditional batch task planning mode shouldbe transformed into the user-oriented task planning mode. Consideringthere are many approaches for data acquisition due tothe new techniques of ORS satellite, the data acquisition chaintask planning problem for ORS satellite can be seen as the multimodalroute planning problem. Thereby, a framework is presentedusing label-constrained shortest path technique with the conflictresolution. To apply this framework to solve the ORS satellite taskplanning problem, the preprocessing and the conflict resolutionstrategies are discussed in detail. Based on the above work, theuser-oriented data acquisition chain task planning algorithm forORS satellite is proposed. The exact solution can be obtainedin polynomial time using the proposed algorithm. The simulationexperiments validate the feasibility and the adaptability of the proposedapproach.展开更多
To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth p...To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating ( LFM ) signal ( i. e. chirp ) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile ( HR- RP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field ex- perimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent in- tegration.展开更多
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘With the development of operationally responsive space(ORS) and on-board processing techniques, the end users canreceive the observation data from the ORS satellite directly. Tosatisfy the demand for reducing the requirements-tasking-effectscycle from one day to hours, the various resources of the wholedata acquisition chain (including satellites, ground stations, dataprocessing centers, users, etc.) should be taken into an overallconsideration, and the traditional batch task planning mode shouldbe transformed into the user-oriented task planning mode. Consideringthere are many approaches for data acquisition due tothe new techniques of ORS satellite, the data acquisition chaintask planning problem for ORS satellite can be seen as the multimodalroute planning problem. Thereby, a framework is presentedusing label-constrained shortest path technique with the conflictresolution. To apply this framework to solve the ORS satellite taskplanning problem, the preprocessing and the conflict resolutionstrategies are discussed in detail. Based on the above work, theuser-oriented data acquisition chain task planning algorithm forORS satellite is proposed. The exact solution can be obtainedin polynomial time using the proposed algorithm. The simulationexperiments validate the feasibility and the adaptability of the proposedapproach.
基金Supported by the National Natural Science Foundation of China(61301189)
文摘To prevent the long-time coherent integration and limited range window stumbling blocks of stretch processing and reduce computational complexity, a novel method called multi-subpulse process of large time-bandwidth product linear frequency modulating ( LFM ) signal ( i. e. chirp ) is proposed in this paper. The wideband chirp signal is split up into several compressed subpulses. Then the fast Fourier transform (FFT) is used to reconstruct the high resolution range profile ( HR- RP) in a relative short computation time. For multi-frame, pulse Doppler (PD) process is performed to obtain the two-dimension range-Doppler (R-D) high resolution profile. Simulations and field ex- perimental results show that the proposed method can provide high-quality target profile over a large range window in a short computation time and has the promising potential for long-time coherent in- tegration.