期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Aircraft noise and its nearfield propagation computations 被引量:8
1
作者 Xin Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期960-977,共18页
Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed ... Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and ra- diation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success. 展开更多
关键词 Aircraft noise computational aeroacoustics Sound propagation
在线阅读 下载PDF
Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method 被引量:3
2
作者 Xianghua Jiang Yanbin Wang +1 位作者 Yanfang Qin Hiroshi Takenaka 《Earthquake Science》 CSCD 2015年第3期163-174,共12页
We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids... We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations.Surface multiples dominate wavefields for shallow event.Core–mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data. 展开更多
关键词 Whole Moon model Seismic wavefield SH-wave propagation Hybrid method Parallel computing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部