As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ...As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.展开更多
The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of e...The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of employing intelligent reflective surfaces(IRS)andUAVs as relay nodes to efficiently offload user computing tasks to theMEC server system model.Specifically,the user node accesses the primary user spectrum,while adhering to the constraint of satisfying the primary user peak interference power.Furthermore,the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes,namely time switching(TS)and power splitting(PS).The selection of the optimal UAV is based on the maximization of the instantaneous signal-to-noise ratio.Subsequently,the analytical expression for the outage probability of the system in Rayleigh channels is derived and analyzed.The study investigates the impact of various system parameters,including the number of UAVs,peak interference power,TS,and PS factors,on the system’s outage performance through simulation.The proposed system is also compared to two conventional benchmark schemes:the optimal UAV link transmission and the IRS link transmission.The simulation results validate the theoretical derivation and demonstrate the superiority of the proposed scheme over the benchmark schemes.展开更多
In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapi...In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy.展开更多
With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications a...With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles,computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention.However,the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges.In this paper,we propose a heterogeneous Vehicular Edge Computing(VEC)architecture with Task Vehicles(TaVs),Service Vehicles(SeVs)and Roadside Units(RSUs),and propose a distributed algorithm,namely PG-MRL,which jointly optimizes offloading decision and resource allocation.In the first stage,the offloading decisions of TaVs are obtained through a potential game.In the second stage,a multi-agent Deep Deterministic Policy Gradient(DDPG),one of deep reinforcement learning algorithms,with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection.The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay.展开更多
Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for t...Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms.展开更多
The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial veh...The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial vehicles-assisted mobile edge computing(UAV-MEC)has gained attention in providing computing resources to vehicles and optimizing system costs.We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption.We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm(DVCG-MWOA)to address this problem.A novel dynamic clustering algorithm is designed based on vehiclemobility and task offloading efficiency requirements,where each UAV independently serves as the cluster head for a vehicle cluster and adjusts its position at the end of each timeslot in response to vehiclemovement.Within eachUAV-led cluster,cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints,ensuring efficient resource utilization.To enhance offloading efficiency,we improve the multi-objective whale optimization algorithm(MOWOA),resulting in the MWOA.This enhanced algorithm determines the optimal allocation of pending tasks to different edge computing devices and the resource utilization ratio of each device,ultimately achieving a Pareto-optimal solution set for delay and energy consumption.Experimental results demonstrate that the proposed joint offloading scheme significantly reduces both delay and energy consumption compared to existing approaches,offering superior performance for vehicular networks.展开更多
Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient int...Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient inter-satellite cooperative computation offloading(ICCO)algorithm for LEO satellite networks.Specifically,an ICCO system model is constructed,which considers using neighboring satellites in the LEO satellite networks to collaboratively process tasks generated by ground user terminals,effectively improving resource utilization efficiency.Additionally,the optimization objective of minimizing the system task computation offloading delay and energy consumption is established,which is decoupled into two sub-problems.In terms of computational resource allocation,the convexity of the problem is proved through theoretical derivation,and the Lagrange multiplier method is used to obtain the optimal solution of computational resources.To deal with the task offloading decision,a dynamic sticky binary particle swarm optimization algorithm is designed to obtain the offloading decision by iteration.Simulation results show that the ICCO algorithm can effectively reduce the delay and energy consumption.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cess...The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.展开更多
By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal serv...By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating ...Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating Software Defined Networks(SDN)for enhancing resource orchestration,task scheduling,and traffic management remains a relatively underexplored area with significant innovation potential.This paper provides a comprehensive review of existing mechanisms,categorizing resource provisioning approaches into static,dynamic,and user-centric models,while examining applications across domains such as IoT,healthcare,and autonomous systems.The survey highlights challenges such as scalability,interoperability,and security in managing dynamic and heterogeneous infrastructures.This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed resources through advanced orchestration processes.Furthermore,proposes future directions,including AI-driven optimization techniques and hybrid orchestrationmodels.By addressing these emerging opportunities,thiswork serves as a foundational reference for advancing resource management strategies in next-generation cloud,fog,and edge computing ecosystems.This survey concludes that SDN-enabled computing environments find essential guidance in addressing upcoming management opportunities.展开更多
In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the V...In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.展开更多
Significant breakthroughs in the Internet of Things(IoT)and 5G technologies have driven several smart healthcare activities,leading to a flood of computationally intensive applications in smart healthcare networks.Mob...Significant breakthroughs in the Internet of Things(IoT)and 5G technologies have driven several smart healthcare activities,leading to a flood of computationally intensive applications in smart healthcare networks.Mobile Edge Computing(MEC)is considered as an efficient solution to provide powerful computing capabilities to latency or energy sensitive nodes.The low-latency and high-reliability requirements of healthcare application services can be met through optimal offloading and resource allocation for the computational tasks of the nodes.In this study,we established a system model consisting of two types of nodes by considering nondivisible and trade-off computational tasks between latency and energy consumption.To minimize processing cost of the system tasks,a Mixed-Integer Nonlinear Programming(MINLP)task offloading problem is proposed.Furthermore,this problem is decomposed into task offloading decisions and resource allocation problems.The resource allocation problem is solved using traditional optimization algorithms,and the offloading decision problem is solved using a deep reinforcement learning algorithm.We propose an Online Offloading based on the Deep Reinforcement Learning(OO-DRL)algorithm with parallel deep neural networks and a weightsensitive experience replay mechanism.Simulation results show that,compared with several existing methods,our proposed algorithm can perform real-time task offloading in a smart healthcare network in dynamically varying environments and reduce the system task processing cost.展开更多
The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up ...The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up new industrial opportunities in both air and space,with satellite-powered computing emerging as a new computing paradigm:Orbital Edge Computing(OEC).Compared to terrestrial edge computing,the mobility of LEO satellites and their limited communication,computation,and storage resources pose challenges in designing task-specific scheduling algorithms.Previous survey papers have largely focused on terrestrial edge computing or the integration of space and ground technologies,lacking a comprehensive summary of OEC architecture,algorithms,and case studies.This paper conducts a comprehensive survey and analysis of OEC's system architecture,applications,algorithms,and simulation tools,providing a solid background for researchers in the field.By discussing OEC use cases and the challenges faced,potential research directions for future OEC research are proposed.展开更多
Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers...Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies.展开更多
Intelligent edge computing carries out edge devices of the Internet of things(Io T) for data collection, calculation and intelligent analysis, so as to proceed data analysis nearby and make feedback timely. Because of...Intelligent edge computing carries out edge devices of the Internet of things(Io T) for data collection, calculation and intelligent analysis, so as to proceed data analysis nearby and make feedback timely. Because of the mobility of mobile equipments(MEs), if MEs move among the reach of the small cell networks(SCNs), the offloaded tasks cannot be returned to MEs successfully. As a result, migration incurs additional costs. In this paper, joint task offloading and migration schemes in mobility-aware Mobile Edge Computing(MEC) network based on Reinforcement Learning(RL) are proposed to obtain the maximum system revenue. Firstly, the joint optimization problems of maximizing the total revenue of MEs are put forward, in view of the mobility-aware MEs. Secondly, considering time-varying computation tasks and resource conditions, the mixed integer non-linear programming(MINLP) problem is described as a Markov Decision Process(MDP). Then we propose a novel reinforcement learning-based optimization framework to work out the problem, instead traditional methods. Finally, it is shown that the proposed schemes can obviously raise the total revenue of MEs by giving simulation results.展开更多
Handling the massive amount of data generated by Smart Mobile Devices(SMDs)is a challenging computational problem.Edge Computing is an emerging computation paradigm that is employed to conquer this problem.It can brin...Handling the massive amount of data generated by Smart Mobile Devices(SMDs)is a challenging computational problem.Edge Computing is an emerging computation paradigm that is employed to conquer this problem.It can bring computation power closer to the end devices to reduce their computation latency and energy consumption.Therefore,this paradigm increases the computational ability of SMDs by collaboration with edge servers.This is achieved by computation offloading from the mobile devices to the edge nodes or servers.However,not all applications benefit from computation offloading,which is only suitable for certain types of tasks.Task properties,SMD capability,wireless channel state,and other factors must be counted when making computation offloading decisions.Hence,optimization methods are important tools in scheduling computation offloading tasks in Edge Computing networks.In this paper,we review six types of optimization methods-they are Lyapunov optimization,convex optimization,heuristic techniques,game theory,machine learning,and others.For each type,we focus on the objective functions,application areas,types of offloading methods,evaluation methods,as well as the time complexity of the proposed algorithms.We discuss a few research problems that are still open.Our purpose for this review is to provide a concise summary that can help new researchers get started with their computation offloading researches for Edge Computing networks.展开更多
To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia re...To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users.展开更多
With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of...With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of computation-intensive and power-hungry applications result in a large amount of energy consumption and computation costs,which bring great challenges to the on-board system.It is necessary to exploit traffic offloading and scheduling in vehicular networks to ensure the Quality of Experience(QoE).In this paper,a joint offloading strategy based on quantum particle swarm optimization for the Mobile Edge Computing(MEC)enabled vehicular networks is presented.To minimize the delay cost and energy consumption,a task execution optimization model is formulated to assign the task to the available service nodes,which includes the service vehicles and the nearby Road Side Units(RSUs).For the task offloading process via Vehicle to Vehicle(V2V)communication,a vehicle selection algorithm is introduced to obtain an optimal offloading decision sequence.Next,an improved quantum particle swarm optimization algorithm for joint offloading is proposed to optimize the task delay and energy consumption.To maintain the diversity of the population,the crossover operator is introduced to exchange information among individuals.Besides,the crossover probability is defined to improve the search ability and convergence speed of the algorithm.Meanwhile,an adaptive shrinkage expansion factor is designed to improve the local search accuracy in the later iterations.Simulation results show that the proposed joint offloading strategy can effectively reduce the system overhead and the task completion delay under different system parameters.展开更多
基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62371012in part by the Beijing Natural Science Foundation under Grant 4252001.
文摘As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.
基金the National Natural Science Foundation of China(62271192)Henan Provincial Scientists Studio(GZS2022015)+10 种基金Central Plains Talents Plan(ZYYCYU202012173)NationalKeyR&DProgramofChina(2020YFB2008400)the Program ofCEMEE(2022Z00202B)LAGEO of Chinese Academy of Sciences(LAGEO-2019-2)Program for Science&Technology Innovation Talents in the University of Henan Province(20HASTIT022)Natural Science Foundation of Henan under Grant 202300410126Program for Innovative Research Team in University of Henan Province(21IRTSTHN015)Equipment Pre-Research Joint Research Program of Ministry of Education(8091B032129)Training Program for Young Scholar of Henan Province for Colleges and Universities(2020GGJS172)Program for Science&Technology Innovation Talents in Universities of Henan Province under Grand(22HASTIT020)Henan Province Science Fund for Distinguished Young Scholars(222300420006).
文摘The utilization of mobile edge computing(MEC)for unmanned aerial vehicle(UAV)communication presents a viable solution for achieving high reliability and low latency communication.This study explores the potential of employing intelligent reflective surfaces(IRS)andUAVs as relay nodes to efficiently offload user computing tasks to theMEC server system model.Specifically,the user node accesses the primary user spectrum,while adhering to the constraint of satisfying the primary user peak interference power.Furthermore,the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes,namely time switching(TS)and power splitting(PS).The selection of the optimal UAV is based on the maximization of the instantaneous signal-to-noise ratio.Subsequently,the analytical expression for the outage probability of the system in Rayleigh channels is derived and analyzed.The study investigates the impact of various system parameters,including the number of UAVs,peak interference power,TS,and PS factors,on the system’s outage performance through simulation.The proposed system is also compared to two conventional benchmark schemes:the optimal UAV link transmission and the IRS link transmission.The simulation results validate the theoretical derivation and demonstrate the superiority of the proposed scheme over the benchmark schemes.
基金supported by the Basic Scientific Research Business Fund Project of Higher Education Institutions in Heilongjiang Province(145409601)the First Batch of Experimental Teaching and Teaching Laboratory Construction Research Projects in Heilongjiang Province(SJGZ20240038).
文摘In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy.
基金supported by Future Network Scientific Research Fund Project (FNSRFP-2021-ZD-4)National Natural Science Foundation of China (No.61991404,61902182)+1 种基金National Key Research and Development Program of China under Grant 2020YFB1600104Key Research and Development Plan of Jiangsu Province under Grant BE2020084-2。
文摘With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles,computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention.However,the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges.In this paper,we propose a heterogeneous Vehicular Edge Computing(VEC)architecture with Task Vehicles(TaVs),Service Vehicles(SeVs)and Roadside Units(RSUs),and propose a distributed algorithm,namely PG-MRL,which jointly optimizes offloading decision and resource allocation.In the first stage,the offloading decisions of TaVs are obtained through a potential game.In the second stage,a multi-agent Deep Deterministic Policy Gradient(DDPG),one of deep reinforcement learning algorithms,with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection.The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay.
基金supported by National Natural Science Foundation of China No.62231012Natural Science Foundation for Outstanding Young Scholars of Heilongjiang Province under Grant YQ2020F001Heilongjiang Province Postdoctoral General Foundation under Grant AUGA4110004923.
文摘Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms.
基金funded by Shandong University of Technology Doctoral Program in Science and Technology,grant number 4041422007.
文摘The rapid advance of Connected-Automated Vehicles(CAVs)has led to the emergence of diverse delaysensitive and energy-constrained vehicular applications.Given the high dynamics of vehicular networks,unmanned aerial vehicles-assisted mobile edge computing(UAV-MEC)has gained attention in providing computing resources to vehicles and optimizing system costs.We model the computing offloading problem as a multi-objective optimization challenge aimed at minimizing both task processing delay and energy consumption.We propose a three-stage hybrid offloading scheme called Dynamic Vehicle Clustering Game-based Multi-objective Whale Optimization Algorithm(DVCG-MWOA)to address this problem.A novel dynamic clustering algorithm is designed based on vehiclemobility and task offloading efficiency requirements,where each UAV independently serves as the cluster head for a vehicle cluster and adjusts its position at the end of each timeslot in response to vehiclemovement.Within eachUAV-led cluster,cooperative game theory is applied to allocate computing resourceswhile respecting delay constraints,ensuring efficient resource utilization.To enhance offloading efficiency,we improve the multi-objective whale optimization algorithm(MOWOA),resulting in the MWOA.This enhanced algorithm determines the optimal allocation of pending tasks to different edge computing devices and the resource utilization ratio of each device,ultimately achieving a Pareto-optimal solution set for delay and energy consumption.Experimental results demonstrate that the proposed joint offloading scheme significantly reduces both delay and energy consumption compared to existing approaches,offering superior performance for vehicular networks.
基金supported in part by Sub Project of National Key Research and Development plan in 2020 NO.2020YFC1511704Beijing Information Science and Technology University NO.2020KYNH212,NO.2021CGZH302+1 种基金Beijing Science and Technology Project(Grant No.Z211100004421009)in part by the National Natural Science Foundation of China(Grant No.62301058).
文摘Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient inter-satellite cooperative computation offloading(ICCO)algorithm for LEO satellite networks.Specifically,an ICCO system model is constructed,which considers using neighboring satellites in the LEO satellite networks to collaboratively process tasks generated by ground user terminals,effectively improving resource utilization efficiency.Additionally,the optimization objective of minimizing the system task computation offloading delay and energy consumption is established,which is decoupled into two sub-problems.In terms of computational resource allocation,the convexity of the problem is proved through theoretical derivation,and the Lagrange multiplier method is used to obtain the optimal solution of computational resources.To deal with the task offloading decision,a dynamic sticky binary particle swarm optimization algorithm is designed to obtain the offloading decision by iteration.Simulation results show that the ICCO algorithm can effectively reduce the delay and energy consumption.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
基金supported in part by the National Natural Science Foundation of China under Grant 61901128,62273109the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB510032).
文摘The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900600)the National Natural Science Foundation of China(61971041+2 种基金62001027)the Beijing Natural Science Foundation(M22001)the Technological Innovation Program of Beijing Institute of Technology(2022CX01027).
文摘By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
文摘Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating Software Defined Networks(SDN)for enhancing resource orchestration,task scheduling,and traffic management remains a relatively underexplored area with significant innovation potential.This paper provides a comprehensive review of existing mechanisms,categorizing resource provisioning approaches into static,dynamic,and user-centric models,while examining applications across domains such as IoT,healthcare,and autonomous systems.The survey highlights challenges such as scalability,interoperability,and security in managing dynamic and heterogeneous infrastructures.This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed resources through advanced orchestration processes.Furthermore,proposes future directions,including AI-driven optimization techniques and hybrid orchestrationmodels.By addressing these emerging opportunities,thiswork serves as a foundational reference for advancing resource management strategies in next-generation cloud,fog,and edge computing ecosystems.This survey concludes that SDN-enabled computing environments find essential guidance in addressing upcoming management opportunities.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia,under Project RSPD2025R681。
文摘In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government.(MSIT)(2021R1A2B5B02087169)supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(RS-202300259004)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)。
文摘Significant breakthroughs in the Internet of Things(IoT)and 5G technologies have driven several smart healthcare activities,leading to a flood of computationally intensive applications in smart healthcare networks.Mobile Edge Computing(MEC)is considered as an efficient solution to provide powerful computing capabilities to latency or energy sensitive nodes.The low-latency and high-reliability requirements of healthcare application services can be met through optimal offloading and resource allocation for the computational tasks of the nodes.In this study,we established a system model consisting of two types of nodes by considering nondivisible and trade-off computational tasks between latency and energy consumption.To minimize processing cost of the system tasks,a Mixed-Integer Nonlinear Programming(MINLP)task offloading problem is proposed.Furthermore,this problem is decomposed into task offloading decisions and resource allocation problems.The resource allocation problem is solved using traditional optimization algorithms,and the offloading decision problem is solved using a deep reinforcement learning algorithm.We propose an Online Offloading based on the Deep Reinforcement Learning(OO-DRL)algorithm with parallel deep neural networks and a weightsensitive experience replay mechanism.Simulation results show that,compared with several existing methods,our proposed algorithm can perform real-time task offloading in a smart healthcare network in dynamically varying environments and reduce the system task processing cost.
基金funded by the Hong Kong-Macao-Taiwan Science and Technology Cooperation Project of the Science and Technology Innovation Action Plan in Shanghai,China(23510760200)the Oriental Talent Youth Program of Shanghai,China(No.Y3DFRCZL01)+1 种基金the Outstanding Program of the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y2023080)the Strategic Priority Research Program of the Chinese Academy of Sciences Category A(No.XDA0360404).
文摘The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up new industrial opportunities in both air and space,with satellite-powered computing emerging as a new computing paradigm:Orbital Edge Computing(OEC).Compared to terrestrial edge computing,the mobility of LEO satellites and their limited communication,computation,and storage resources pose challenges in designing task-specific scheduling algorithms.Previous survey papers have largely focused on terrestrial edge computing or the integration of space and ground technologies,lacking a comprehensive summary of OEC architecture,algorithms,and case studies.This paper conducts a comprehensive survey and analysis of OEC's system architecture,applications,algorithms,and simulation tools,providing a solid background for researchers in the field.By discussing OEC use cases and the challenges faced,potential research directions for future OEC research are proposed.
基金supported in part by the National Key R&D Program of China under Grant 2018YFC0831502.
文摘Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies.
基金supported in part by the National Natural Science Foundation of China under Grant 61701038。
文摘Intelligent edge computing carries out edge devices of the Internet of things(Io T) for data collection, calculation and intelligent analysis, so as to proceed data analysis nearby and make feedback timely. Because of the mobility of mobile equipments(MEs), if MEs move among the reach of the small cell networks(SCNs), the offloaded tasks cannot be returned to MEs successfully. As a result, migration incurs additional costs. In this paper, joint task offloading and migration schemes in mobility-aware Mobile Edge Computing(MEC) network based on Reinforcement Learning(RL) are proposed to obtain the maximum system revenue. Firstly, the joint optimization problems of maximizing the total revenue of MEs are put forward, in view of the mobility-aware MEs. Secondly, considering time-varying computation tasks and resource conditions, the mixed integer non-linear programming(MINLP) problem is described as a Markov Decision Process(MDP). Then we propose a novel reinforcement learning-based optimization framework to work out the problem, instead traditional methods. Finally, it is shown that the proposed schemes can obviously raise the total revenue of MEs by giving simulation results.
基金supported by National Key R&D Program of China under Grant.No.2018YFB1800805National Natural Science Foundation of China under Grant No.61772345,61902257,61972261Shenzhen Science and Technology Program under Grant No.RCYX20200714114645048,No.JCYJ20190808142207420,No.GJHZ20190822095416463.
文摘Handling the massive amount of data generated by Smart Mobile Devices(SMDs)is a challenging computational problem.Edge Computing is an emerging computation paradigm that is employed to conquer this problem.It can bring computation power closer to the end devices to reduce their computation latency and energy consumption.Therefore,this paradigm increases the computational ability of SMDs by collaboration with edge servers.This is achieved by computation offloading from the mobile devices to the edge nodes or servers.However,not all applications benefit from computation offloading,which is only suitable for certain types of tasks.Task properties,SMD capability,wireless channel state,and other factors must be counted when making computation offloading decisions.Hence,optimization methods are important tools in scheduling computation offloading tasks in Edge Computing networks.In this paper,we review six types of optimization methods-they are Lyapunov optimization,convex optimization,heuristic techniques,game theory,machine learning,and others.For each type,we focus on the objective functions,application areas,types of offloading methods,evaluation methods,as well as the time complexity of the proposed algorithms.We discuss a few research problems that are still open.Our purpose for this review is to provide a concise summary that can help new researchers get started with their computation offloading researches for Edge Computing networks.
基金This work was supported by the National Natural Science Foundation of China(61571059 and 61871058).
文摘To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users.
基金funded by National Natural Science Foundation of China (Grant number 62076106).
文摘With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of computation-intensive and power-hungry applications result in a large amount of energy consumption and computation costs,which bring great challenges to the on-board system.It is necessary to exploit traffic offloading and scheduling in vehicular networks to ensure the Quality of Experience(QoE).In this paper,a joint offloading strategy based on quantum particle swarm optimization for the Mobile Edge Computing(MEC)enabled vehicular networks is presented.To minimize the delay cost and energy consumption,a task execution optimization model is formulated to assign the task to the available service nodes,which includes the service vehicles and the nearby Road Side Units(RSUs).For the task offloading process via Vehicle to Vehicle(V2V)communication,a vehicle selection algorithm is introduced to obtain an optimal offloading decision sequence.Next,an improved quantum particle swarm optimization algorithm for joint offloading is proposed to optimize the task delay and energy consumption.To maintain the diversity of the population,the crossover operator is introduced to exchange information among individuals.Besides,the crossover probability is defined to improve the search ability and convergence speed of the algorithm.Meanwhile,an adaptive shrinkage expansion factor is designed to improve the local search accuracy in the later iterations.Simulation results show that the proposed joint offloading strategy can effectively reduce the system overhead and the task completion delay under different system parameters.