In order to understand the influence of ordering behaviors on the thermodynamic and mechanical properties of multi-principal element alloys(MPEAs),the temperature-dependent thermodynamic properties and mechanical prop...In order to understand the influence of ordering behaviors on the thermodynamic and mechanical properties of multi-principal element alloys(MPEAs),the temperature-dependent thermodynamic properties and mechanical properties of FCC_CoNiV MPEAs were comparatively predicted,where the alloys were modeled as the ordered configurations based on our previously predicted site occupying fractions(SOFs),as well as disordered configuration based on traditional special quasi-random structure(SQS).The ordering behavior not only improves the thermodynamic stability of the structure,but also increases the elastic properties and Vickers hardness.For example,at 973 K,the predicted bulk modulus(B),shear modulus(G),Young’s modulus(E),and Vickers hardness(HV)of FCC_CoNiV MPEA based on SOFs configuration are 187.82,79.03,207.93,and 7.58 GPa,respectively,while the corresponded data are 172.58,57.45,155.14,and 4.64 GPa for the SQS configuration,respectively.The Vickers hardness predicted based on SOFs agrees considerably well with the available experimental data,while it is underestimated obviously based on SQS.展开更多
Spin Hall effect(SHE)provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing.In this work,we conduct high-throughput calculations on the spi...Spin Hall effect(SHE)provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing.In this work,we conduct high-throughput calculations on the spin Hall conductivity(SHC)of antiperovskite compounds with the composition ZXM3,where Z is a nonmetal,X is a metal,and M is a platinum group metal.From an initial database over 4500 structures,we screen 295 structurally stable compounds and identify 24 compounds with intrinsic SHC exceeding 500(ℏ/e)(Ω^(⁻1)cm^(⁻1)).We reveal a strong dependence of SHC on spin-orbit coupling-induced energy splitting near the Fermi level.In addition,SHCs can be regulated through proper doping of electrons or holes.The present work establishes high-throughput database of SHC in antiperovskites which is crucial for designing future electric and spintronic devices.展开更多
It is urgent to establish a series of reasonable and general approaches to qualitatively and graphically characterize the four core effects of multi-principal element alloys(MPEAs)based on the inherent site preference...It is urgent to establish a series of reasonable and general approaches to qualitatively and graphically characterize the four core effects of multi-principal element alloys(MPEAs)based on the inherent site preference.In this contribution,a qualitatively and graphically characterizing approach to the diffusion behavior of interstitial nonmetallic atoms diffusing along the neighboring octahedra in MPEAs was explored intensively.For this purpose,the C atom diffusing along the neighboring octahedra in FCC_CoNiV MPEA with(V1.0000)1a(Co0.4445Ni0.4444V0.1111)3c,a constant ordered occupying configuration predicted in our previous paper,was demonstrated in detail.Six distinct diffusion paths along[110],[101],and[011]directions on XY,XZ,and YZ planes of FCC_CoNiV MPEA with forward and backward diffusion directions were explored one by one,respectively.The diffusion energy barrier,diffusion coefficient,diffusion constant,and activation energy were derived by employing first-principles calculations based on density functional theory alongside the Climbing Image Nudged Elastic Band method.Unlike diffusing behavior in pure metallic elements,the non-periodic diffusion energy barrier waves are revealed for the real FCC_CoNiV MPEA structure.The significant variations in the diffusion energy barriers are influenced by the atomic environment,particularly the interaction between V and C atoms,which enhances the localization of electrons and increases the overall diffusion energy barrier.The energy barriers show similar trends along six paths,but significant variations occur across different octahedral sites.展开更多
基金financially supported by the State Administration for Market Regulation,China(No.2021MK050)the National Natural Science Foundation of China(Nos.50971043,51171046,21973012)+3 种基金the Key Research and Development Program of China(Nos.2022YFB3807200,CISRI-21T62450ZD)the Natural Science Foundation of Fujian Province,China(Nos.2021J01590,2020J01351,2018J01754,2020J01474)the Student Research and Training Program(SRTP) of Fuzhou University,China(No.29320)Fujian Provincial Department of Science & Technology,China(No.2021H6011)。
文摘In order to understand the influence of ordering behaviors on the thermodynamic and mechanical properties of multi-principal element alloys(MPEAs),the temperature-dependent thermodynamic properties and mechanical properties of FCC_CoNiV MPEAs were comparatively predicted,where the alloys were modeled as the ordered configurations based on our previously predicted site occupying fractions(SOFs),as well as disordered configuration based on traditional special quasi-random structure(SQS).The ordering behavior not only improves the thermodynamic stability of the structure,but also increases the elastic properties and Vickers hardness.For example,at 973 K,the predicted bulk modulus(B),shear modulus(G),Young’s modulus(E),and Vickers hardness(HV)of FCC_CoNiV MPEA based on SOFs configuration are 187.82,79.03,207.93,and 7.58 GPa,respectively,while the corresponded data are 172.58,57.45,155.14,and 4.64 GPa for the SQS configuration,respectively.The Vickers hardness predicted based on SOFs agrees considerably well with the available experimental data,while it is underestimated obviously based on SQS.
基金supported by the National Natural Science Foundation of China(Grants Nos.12174450 and 11874429)the National Talents Program of China,the Science and Technology Innovation Program of Hunan Province(Grant No.2024RC1013)+3 种基金the Key Project of Hunan Provincial Natural Science Foundation(Grant No.2024JJ3029)the Hunan Provincial Key Research and Development Program(Grant No.2022WK2002)the Distinguished Youth Foundation of Hunan Province(Grant No.2020JJ2039),the Project of High-Level Talents Accumulation of Hunan Province(Grant No.2018RS3021)Program of Hundreds of Talents of Hunan Province,the State Key Laboratory of Powder Metallurgy,Start-up Funding and Innovation-Driven Plan(Grant No.2019CX023)of Central South University,Postgraduate Scientific Research Innovation Project of Hunan Province(Grants No.CX20230104)。
文摘Spin Hall effect(SHE)provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing.In this work,we conduct high-throughput calculations on the spin Hall conductivity(SHC)of antiperovskite compounds with the composition ZXM3,where Z is a nonmetal,X is a metal,and M is a platinum group metal.From an initial database over 4500 structures,we screen 295 structurally stable compounds and identify 24 compounds with intrinsic SHC exceeding 500(ℏ/e)(Ω^(⁻1)cm^(⁻1)).We reveal a strong dependence of SHC on spin-orbit coupling-induced energy splitting near the Fermi level.In addition,SHCs can be regulated through proper doping of electrons or holes.The present work establishes high-throughput database of SHC in antiperovskites which is crucial for designing future electric and spintronic devices.
基金supported by the National Natural Science Foundation of China(50971043 and 51171046)the Key Research and Development Program of China(CISRI-21T62450ZD)+1 种基金the Natural Science Foundation of Fujian Province(2014J01176,2018J01754,and 2021J01590)the Student Research and Training Program(SRTP)of Fuzhou University(27297).
文摘It is urgent to establish a series of reasonable and general approaches to qualitatively and graphically characterize the four core effects of multi-principal element alloys(MPEAs)based on the inherent site preference.In this contribution,a qualitatively and graphically characterizing approach to the diffusion behavior of interstitial nonmetallic atoms diffusing along the neighboring octahedra in MPEAs was explored intensively.For this purpose,the C atom diffusing along the neighboring octahedra in FCC_CoNiV MPEA with(V1.0000)1a(Co0.4445Ni0.4444V0.1111)3c,a constant ordered occupying configuration predicted in our previous paper,was demonstrated in detail.Six distinct diffusion paths along[110],[101],and[011]directions on XY,XZ,and YZ planes of FCC_CoNiV MPEA with forward and backward diffusion directions were explored one by one,respectively.The diffusion energy barrier,diffusion coefficient,diffusion constant,and activation energy were derived by employing first-principles calculations based on density functional theory alongside the Climbing Image Nudged Elastic Band method.Unlike diffusing behavior in pure metallic elements,the non-periodic diffusion energy barrier waves are revealed for the real FCC_CoNiV MPEA structure.The significant variations in the diffusion energy barriers are influenced by the atomic environment,particularly the interaction between V and C atoms,which enhances the localization of electrons and increases the overall diffusion energy barrier.The energy barriers show similar trends along six paths,but significant variations occur across different octahedral sites.