To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-unifor...A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model.展开更多
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow an...Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method(HMM)to describe the flow fields accurately.The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics(MD)simulations on the microscale level.Notably,the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model.The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in(J Comput Phys 469:111551,2022).To overcome the numerical complexity of the MD microscale model,a deep neural network is employed as an efficient surrogate model.The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions.To our knowledge,such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.展开更多
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
This work aims at comparing surface tension models in VOF(Volume of Fluid) modeling and investigating the effects of gas distributor and gas velocity. Hydrodynamics of a continuous chain of bubbles inside a bubble col...This work aims at comparing surface tension models in VOF(Volume of Fluid) modeling and investigating the effects of gas distributor and gas velocity. Hydrodynamics of a continuous chain of bubbles inside a bubble column reactor was simulated. The grid independence study was first conducted and a grid size of 1.0 mm was adopted in order to minimize the computing time without compromising the accuracy of the results. The predictions were validated by comparing the experimental studies reported in the literature. It was found that all surface tension models can describe the bubble rise and bubble plume in a column with slight deviations.展开更多
Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process...Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency.展开更多
Liquid permeability of the mushy zone is important for porosity formation during the solidification process. In order to investigate the permeability of the mushy zone, an integrated model was developed by combining t...Liquid permeability of the mushy zone is important for porosity formation during the solidification process. In order to investigate the permeability of the mushy zone, an integrated model was developed by combining the phase field model and computational fluid dynamics (CFD) model. The three-dimensional multigrain dendrite morphology was obtained by using the phase field model. Subsequently, the computer-aided design (CAD) geometry and mesh were generated based on calculated dendrite morphologies. Finally, the permeability of the dendritic mushy zone was obtained by solving the Navier-Stokes and continuity equations in ANSYS Fluent software. As an example, the dendritic mushy zone permeability of Al-4.5wt%Cu alloy and its relationship with the solid fractions were studied in detail. The predicted permeability data can be input to the solidification model on a greater length scale for macro segregation and porosity simulations.展开更多
In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction r...In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.展开更多
For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. ...For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. This is because the conservative variables in phasedensity equations include volume fractions. The degeneracy can be avoided by adding an artificial quantity of another material into the pure phase. However, nonphysical waves,such as shear waves in fluids, are introduced by the artificial treatment. In this paper,a transport diffuse interface model, which is able to treat zero/unity volume fractions, is presented for solid-fluid interaction. In the proposed model, a new formulation for phase densities is derived, which is unrelated to volume fractions. Consequently, the new model is able to handle zero/unity volume fractions, and nonphysical waves caused by artificial volume fractions are prevented. One-dimensional and two-dimensional numerical tests demonstrate that more accurate results can be obtained by the proposed model.展开更多
Iterative coupled methods are widely used in multi-fidelity simulation of rotating components due to the simple implementation,which iteratively eliminates the errors between the computational fluid dynamics models an...Iterative coupled methods are widely used in multi-fidelity simulation of rotating components due to the simple implementation,which iteratively eliminates the errors between the computational fluid dynamics models and approximate characteristic maps.However,the convergence and accuracy of the iterative coupled method are trapped in characteristic maps.In particular,iterative steps increase sharply as the operation point moves away from the design point.To address these problems,this paper developed an auxiliary iterative coupled method that introduces the static-pressure-auxiliary characteristic maps and modification factor of mass flow into the component-level model.The developed auxiliary method realized the direct transfer of static pressure between the high-fidelity models and the component-level model.Multi-fidelity simulations of the throttle characteristics were carried out using both the auxiliary and traditional iterative coupled methods,and the simulation results were verified using the experimental data.Additionally,the consistency between the auxiliary and traditional iterative coupled methods was confirmed.Subsequently,multi-fidelity simulations of the speed and altitude characteristics were also conducted.The auxiliary and traditional iterative coupled methods were evaluated in terms of convergence speed and accuracy.The evaluation indicated that the auxiliary iterative coupled method significantly reduces iterative steps by approximately 50%at the near-choked state.In general,the auxiliary iterative coupled method is preferred as a development of the traditional iterative coupled method in the near-choked state,and the combined auxiliary-traditional iterative coupled method provides support for successful multi-fidelity simulation in far-off-design conditions.展开更多
【目的】棒销式砂磨机的工作过程存在复杂的气体、液体和固体的三相耦合现象,为了使仿真工况更接近实际工况,构建气-液-固三相耦合仿真模型,提高棒销式砂磨机仿真设计的准确性。【方法】采用离散单元法(discrete element method,DEM)和...【目的】棒销式砂磨机的工作过程存在复杂的气体、液体和固体的三相耦合现象,为了使仿真工况更接近实际工况,构建气-液-固三相耦合仿真模型,提高棒销式砂磨机仿真设计的准确性。【方法】采用离散单元法(discrete element method,DEM)和计算流体动力学(computational fluid dynamics,CFD)分别研究固体相和流体相,并引入流体体积模型(volume of fluid model,VOF)区分流体相所包含的液体相和气体相,分析固体相运动方程、流体相控制方程,确定气-液界面的识别方法和耦合计算方法,制定仿真流程;通过单球落水仿真、颗粒群落水仿真试验分析CFD-DEM-VOF三相耦合模型仿真计算的精度,并进行准确性验证;在设置仿真参数、进行网格划分及其无关性分析基础上,针对棒销式砂磨机的CFD-DEM-VOF三相耦合模型进行仿真试验;对流体速度、颗粒总能量和颗粒的速度的仿真结果进行分析,并通过实验验证仿真结果。【结果】在单球落水仿真试验中,根据CFD-DEM-VOF三相耦合模型的仿真结果与根据Stokes定律的理论计算结果基本吻合;在颗粒群落水仿真过程中,液面上升高度的仿真值与理论值之间的相对误差为1.37%,VOF模型的体积守恒性较好;棒销四面体网格边长小于2 mm、研磨桶四面体网格边长小于2.5 mm时,满足网格独立性的精度要求,同时计算量也较少;随着棒销转速的增大,流体速度、颗粒总能量、颗粒平均速度也逐渐增大;当棒销转速为1400~2000 r/min时,CFD-DEM-VOF三相耦合模型流体速度的仿真与实验结果最为接近;当棒销转速为1400~2200 r/min时,CFD-DEM-VOF三相耦合模型的颗粒总能量仿真值与实验值的最大相对误差为1%。【结论】与仅仅采用流体相、固体相单相模型或固-液两相模型相比,采用CFD-DEM-VOF三相耦合模型设计棒销式砂磨机的计算精度和准确性较高,仿真性能好。展开更多
为实现多组分复杂流体流动与扩散耦合过程的准确预测,提出一种耦合多组分Shan-Chen格子玻尔兹曼法(lattice Boltzmann method,LBM)、Maxwell-Stefan扩散通量方程及4参数(临界温度、临界压力、偏心因子和体积修正因子)Peng-Robinson状态...为实现多组分复杂流体流动与扩散耦合过程的准确预测,提出一种耦合多组分Shan-Chen格子玻尔兹曼法(lattice Boltzmann method,LBM)、Maxwell-Stefan扩散通量方程及4参数(临界温度、临界压力、偏心因子和体积修正因子)Peng-Robinson状态方程(equation of state,EOS)的多组分流体流动与扩散耦合模型(equation of state Maxwell-Stefan force model,EOS-MS模型).通过Peng-Robinson EOS计算混合流体整体的流体间作用力,结合多组分LBM中流体间作用力与压力的关系,构建组分流速与流体间作用力的关联,并代入Maxwell-Stefan方程,推导得到各组分受力的代数方程组.利用精确差分法(exact difference method,EDM)将计算得到的组分间作用力引入多组分LBM.分别模拟甲烷、乙烷纯物质及其混合物的气液两相共存问题,计算结果与标准参考数据及逸度平衡法的计算结果一致,验证了模型在预测混合流体热力学平衡态方面的准确性.通过模拟氢气、氮气和二氧化碳的三元扩散动态过程,发现模型结果与有限体积法预测高度吻合,并成功复现了多组分流体中逆扩散等实际扩散现象,证明模型在多组分流体流动与扩散耦合模拟中的有效性.本研究构建的EoS-MS力模型可准确预测多组分流动与扩散耦合过程,避免了在组分受力计算中引入人为假设带来的误差,为解决地热资源利用等领域中存在的多组分复杂流动问题提供了新方法.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51075311)
文摘A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model.
基金Funding Open Access funding enabled and organized by Projekt DEAL.When preparing this manuscript,the authors have kept the COPE guidelines on how to deal with potential acts of misconduct.The research leading to these results received funding from Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)through the project SFB-TRR 75 with the project number 84292822the DFG under Germanys Excellence Strategy-EXC2075with the project number390740016.
文摘Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface.We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method(HMM)to describe the flow fields accurately.The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics(MD)simulations on the microscale level.Notably,the multiscale approach is necessary to compute the interface dynamics because there is—at present—no closed continuum-scale model.The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in(J Comput Phys 469:111551,2022).To overcome the numerical complexity of the MD microscale model,a deep neural network is employed as an efficient surrogate model.The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions.To our knowledge,such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
基金Supported by the National Ministry of Science and Technology of China(2017YFB0602401)the National Natural Science Foundation of China(21776173,91834303,U1862201,21625603)the Program of Shanghai Subject Chief Scientists(18XD1402000).
文摘This work aims at comparing surface tension models in VOF(Volume of Fluid) modeling and investigating the effects of gas distributor and gas velocity. Hydrodynamics of a continuous chain of bubbles inside a bubble column reactor was simulated. The grid independence study was first conducted and a grid size of 1.0 mm was adopted in order to minimize the computing time without compromising the accuracy of the results. The predictions were validated by comparing the experimental studies reported in the literature. It was found that all surface tension models can describe the bubble rise and bubble plume in a column with slight deviations.
基金supported by the National Natural Science Foundation of China(No.51706244)National Science and Technology Major Projects of China(No.2017-VIII-0003-0114)。
文摘Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0700503)National Natural Science Foundation of China(No.51701013)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation
文摘Liquid permeability of the mushy zone is important for porosity formation during the solidification process. In order to investigate the permeability of the mushy zone, an integrated model was developed by combining the phase field model and computational fluid dynamics (CFD) model. The three-dimensional multigrain dendrite morphology was obtained by using the phase field model. Subsequently, the computer-aided design (CAD) geometry and mesh were generated based on calculated dendrite morphologies. Finally, the permeability of the dendritic mushy zone was obtained by solving the Navier-Stokes and continuity equations in ANSYS Fluent software. As an example, the dendritic mushy zone permeability of Al-4.5wt%Cu alloy and its relationship with the solid fractions were studied in detail. The predicted permeability data can be input to the solidification model on a greater length scale for macro segregation and porosity simulations.
基金Graduate Research and Innovation Program in Jiangsu Province(KYZZ16_0286)
文摘In the industrial process of producing the strong phosphoric acid(SPA),clarification of the solution is essential to the ultimate product.However,the large viscosity of sediment and the induced interface interaction result in difficulties when the SPA is clarified.CFD numerical methodology was applied to simulate internal flow field and performance of the low speed scraper based on Mixture solidliquid two-phase flow model.Sediment deposition was generated by loading solid particles at the bottom of clarifying vessel.The moving mesh and RNG k-εmodel were used to simulate the rotational turbulent flow in clarifying tank.Variables studied,amongst others,were the scraper rotation speed and the mounting height,which could affect the solid suspension height.Features of flow field and solid volume fraction distribution in computational domain were presented and analyzed.The numerical reports of the scraper torque and velocities of inlet and outlet filed were obtained.It seems the torque value of rotatio-nal axis and particle suspending height augment with an increasing rotating speed.Meanwhile,a high revolving speed is good for the deposition discharge.The particle fraction distribution in meridional surface and horizontal surface at fixed rotation speed were analyzed to determine the corresponding optimal installation height.The simulating results reflect the flow field is marginally stirred by the scraper and proper working parameters are obtained,in which case the comprehensive properties of the scraper and the clarifying tank are superior.
基金Project supported by the National Natural Science Foundation of China(Nos.11702029,11771054,U1730118,91852207,and 11801036)the China Postdoctoral Science Foundation(No.2016M600967)
文摘For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. This is because the conservative variables in phasedensity equations include volume fractions. The degeneracy can be avoided by adding an artificial quantity of another material into the pure phase. However, nonphysical waves,such as shear waves in fluids, are introduced by the artificial treatment. In this paper,a transport diffuse interface model, which is able to treat zero/unity volume fractions, is presented for solid-fluid interaction. In the proposed model, a new formulation for phase densities is derived, which is unrelated to volume fractions. Consequently, the new model is able to handle zero/unity volume fractions, and nonphysical waves caused by artificial volume fractions are prevented. One-dimensional and two-dimensional numerical tests demonstrate that more accurate results can be obtained by the proposed model.
基金funded by the Science and Technology Innovation Committee Foundation of Shenzhen,China(Nos.JCYJ20200109141403840 and ZDSYS20220527171405012)the National Natural Science Foundation of China(No.52106045)the Pearl River Talent Recruitment Program,China(No.2019CX01Z084)。
文摘Iterative coupled methods are widely used in multi-fidelity simulation of rotating components due to the simple implementation,which iteratively eliminates the errors between the computational fluid dynamics models and approximate characteristic maps.However,the convergence and accuracy of the iterative coupled method are trapped in characteristic maps.In particular,iterative steps increase sharply as the operation point moves away from the design point.To address these problems,this paper developed an auxiliary iterative coupled method that introduces the static-pressure-auxiliary characteristic maps and modification factor of mass flow into the component-level model.The developed auxiliary method realized the direct transfer of static pressure between the high-fidelity models and the component-level model.Multi-fidelity simulations of the throttle characteristics were carried out using both the auxiliary and traditional iterative coupled methods,and the simulation results were verified using the experimental data.Additionally,the consistency between the auxiliary and traditional iterative coupled methods was confirmed.Subsequently,multi-fidelity simulations of the speed and altitude characteristics were also conducted.The auxiliary and traditional iterative coupled methods were evaluated in terms of convergence speed and accuracy.The evaluation indicated that the auxiliary iterative coupled method significantly reduces iterative steps by approximately 50%at the near-choked state.In general,the auxiliary iterative coupled method is preferred as a development of the traditional iterative coupled method in the near-choked state,and the combined auxiliary-traditional iterative coupled method provides support for successful multi-fidelity simulation in far-off-design conditions.
文摘为实现多组分复杂流体流动与扩散耦合过程的准确预测,提出一种耦合多组分Shan-Chen格子玻尔兹曼法(lattice Boltzmann method,LBM)、Maxwell-Stefan扩散通量方程及4参数(临界温度、临界压力、偏心因子和体积修正因子)Peng-Robinson状态方程(equation of state,EOS)的多组分流体流动与扩散耦合模型(equation of state Maxwell-Stefan force model,EOS-MS模型).通过Peng-Robinson EOS计算混合流体整体的流体间作用力,结合多组分LBM中流体间作用力与压力的关系,构建组分流速与流体间作用力的关联,并代入Maxwell-Stefan方程,推导得到各组分受力的代数方程组.利用精确差分法(exact difference method,EDM)将计算得到的组分间作用力引入多组分LBM.分别模拟甲烷、乙烷纯物质及其混合物的气液两相共存问题,计算结果与标准参考数据及逸度平衡法的计算结果一致,验证了模型在预测混合流体热力学平衡态方面的准确性.通过模拟氢气、氮气和二氧化碳的三元扩散动态过程,发现模型结果与有限体积法预测高度吻合,并成功复现了多组分流体中逆扩散等实际扩散现象,证明模型在多组分流体流动与扩散耦合模拟中的有效性.本研究构建的EoS-MS力模型可准确预测多组分流动与扩散耦合过程,避免了在组分受力计算中引入人为假设带来的误差,为解决地热资源利用等领域中存在的多组分复杂流动问题提供了新方法.