期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation 被引量:5
1
作者 Wang Jinting Lu Liqiao Zhu Fei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期73-86,共14页
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy... Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay. 展开更多
关键词 real-time hybrid simulation computational efficiency numerical integration storage optimization time delay
在线阅读 下载PDF
Mobile-agent-based energy-efficient scheduling with dynamic channel acquisition in mobile cloud computing
2
作者 Xing Liu Chaowei Yuan +1 位作者 Zhen Yang Zengping Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期712-720,共9页
Mobile cloud computing(MCC) combines mobile Internet and cloud computing to improve the performance of mobile applications. However, MCC faces the problem of energy efficiency because of randomly varying channels. A... Mobile cloud computing(MCC) combines mobile Internet and cloud computing to improve the performance of mobile applications. However, MCC faces the problem of energy efficiency because of randomly varying channels. A scheduling algorithm is proposed by introducing the Lyapunov optimization, which can dynamically choose users to transmit data based on queue backlog and channel statistics. The Lyapunov analysis shows that the proposed scheduling algorithm can make a tradeoff between queue backlog and energy consumption in the channel-aware mobile cloud computing system. The simulation results verify the effectiveness of the proposed algorithm. 展开更多
关键词 mobile cloud computing mobile Internet queueing energy efficiency Lyapunov optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部