Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieve...Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings.展开更多
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ...Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.展开更多
This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving ...This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.展开更多
Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runa...Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runaway is the key scientific problem in battery safety research,which can cause fire and even lead to battery explosion under impact loading.In this work,a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established.The detailed computational model,including the anode,cathode,separator,winding,and battery casing,is then developed under the indentation condition.The failure criteria are subsequently established based on the force–displacement curve and the separator failure.Two methods for improving the anti-short circuit ability are proposed.Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.展开更多
Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the...Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the sufficient content of Si is critical for achieving these favorable performances,while excessive Si addition will result in mechanical brittleness.Herein,both physical experiments and finite element(FE)simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys.Four typical states of Si-containing Ti alloys(solid solution state,hypoeutectoid state,near-eutectoid state,hypereutectoid state)with varying Si content(0.3-1.2 wt.%)were fabricated via in-situ alloying spark plasma sintering.Experimental results indicate that in-situ alloying of 0.6 wt.%Si enhances the alloy’s strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti_(5)Si_(3)particles,while higher content of Si(0.9 and 1.2 wt.%)results in coarser primary Ti_(5)Si_(3)agglomerations,deteriorating the ductility.FE simulations support these findings,highlighting the finer and more uniformly distributed Ti_(5)Si_(3)particles contribute to less stress concentration and promote uniform deformation across the matrix,while agglomerated Ti_(5)Si_(3)particles result in increased local stress concentrations,leading to higher chances of particle fracture and reduced ductility.This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Si-containing Ti alloys.展开更多
The underlying electrophysiological mechanisms and clinical treatments of cardiovascular diseases,which are the most common cause of morbidity and mortality worldwide,have gotten a lot of attention and been widely exp...The underlying electrophysiological mechanisms and clinical treatments of cardiovascular diseases,which are the most common cause of morbidity and mortality worldwide,have gotten a lot of attention and been widely explored in recent decades.Along the way,techniques such as medical imaging,computing modeling,and artificial intelligence(AI)have always played significant roles in above studies.In this article,we illustrated the applications of AI in cardiac electrophysiological research and disease prediction.We summarized general principles of AI and then focused on the roles of AI in cardiac basic and clinical studies incorporating magnetic resonance imaging and computing modeling techniques.The main challenges and perspectives were also analyzed.展开更多
In the paper the phenomena of atomization flow are described and a computation model of atomization flow is proposed.Formulas or methods of calculating various affected areas for at- omization flow are presented.
In this paper, we propose a decentralized parallel computation model for global optimization using interval analysis. The model is adaptive to any number of processors and the workload is automatically and evenly dist...In this paper, we propose a decentralized parallel computation model for global optimization using interval analysis. The model is adaptive to any number of processors and the workload is automatically and evenly distributed among all processors by alternative message passing. The problems received by each processor are processed based on their local dominance properties, which avoids unnecessary interval evaluations. Further, the problem is treated as a whole at the beginning of computation so that no initial decomposition scheme is required. Numerical experiments indicate that the model works well and is stable with different number of parallel processors, distributes the load evenly among the processors, and provides an impressive speedup, especially when the problem is time-consuming to solve.展开更多
Magnesium alloys are highly attractive for the use as temporary implant materials,due to their high biocompatibility and biodegradability.However,the prediction of the degradation rate of the implants is difficult,the...Magnesium alloys are highly attractive for the use as temporary implant materials,due to their high biocompatibility and biodegradability.However,the prediction of the degradation rate of the implants is difficult,therefore,a large number of experiments are required.Computational modelling can aid in enabling the predictability,if sufficiently accurate models can be established.This work presents a generalized model of the degradation of pure magnesium in simulated body fluid over the course of 28 days considering uncertainty aspects.The model includes the computation of the metallic material thinning and is calibrated using the mean degradation depth of several experimental datasets simultaneously.Additionally,the formation and precipitation of relevant degradation products on the sample surface is modelled,based on the ionic composition of simulated body fluid.The computed mean degradation depth is in good agreement with the experimental data(NRMSE=0.07).However,the quality of the depth profile curves of the determined elemental weight percentage of the degradation products differs between elements(such as NRMSE=0.40 for phosphorus vs.NRMSE=1.03 for magnesium).This indicates that the implementation of precipitate formation may need further developments.The sensitivity analysis showed that the model parameters are correlated and which is related to the complexity and the high computational costs of the model.Overall,the model provides a correlating fit to the experimental data of pure Mg samples of different geometries degrading in simulated body fluid with reliable error estimation.展开更多
Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis proce...Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an in vivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finite element model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental data for validation were both collected from the same volunteer subject.The validated components included the comparison of static model predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalent measured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneously during six different loaded standing conditions.The predictions of the current FE model were in good agreement with these experimental results.展开更多
Biophysical computational models are complementary to experiments and theories,providing powerful tools for the study of neurological diseases.The focus of this review is the dynamic modeling and control strategies of...Biophysical computational models are complementary to experiments and theories,providing powerful tools for the study of neurological diseases.The focus of this review is the dynamic modeling and control strategies of Parkinson’s disease(PD).In previous studies,the development of parkinsonian network dynamics modeling has made great progress.Modeling mainly focuses on the cortex-thalamus-basal ganglia(CTBG)circuit and its sub-circuits,which helps to explore the dynamic behavior of the parkinsonian network,such as synchronization.Deep brain stimulation(DBS)is an effective strategy for the treatment of PD.At present,many studies are based on the side effects of the DBS.However,the translation from modeling results to clinical disease mitigation therapy still faces huge challenges.Here,we introduce the progress of DBS improvement.Its specific purpose is to develop novel DBS treatment methods,optimize the treatment effect of DBS for each patient,and focus on the study in closed-loop DBS.Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment.展开更多
Ca^2+ dysregulation is an early event observed in Alzheimer's disease(AD) patients preceding the presence of its clinical symptoms.Dysregulation of neuronalCa^2+ will cause synaptic loss and neuronal death,eventu...Ca^2+ dysregulation is an early event observed in Alzheimer's disease(AD) patients preceding the presence of its clinical symptoms.Dysregulation of neuronalCa^2+ will cause synaptic loss and neuronal death,eventually leading to memory impairments and cognitive decline.Treatments targetingCa^2+ signaling pathways are potential therapeutic strategies against AD.The complicated interactions make it challenging and expensive to study the underlying mechanisms as to how Ca^2+ signaling contributes to the pathogenesis of AD.Computational modeling offers new opportunities to study the signaling pathway and test proposed mechanisms.In this mini-review,we present some computational approaches that have been used to study Ca^2+ dysregulation of AD by simulating Ca^2+signaling at various levels.We also pointed out the future directions that computational modeling can be done in studying the Ca^2+ dysregulation in AD.展开更多
Atrial fibrillation(AF)is one of the most common arrhythmias,associated with high morbidity,mortality,and healthcare costs,and it places a significant burden on both individuals and society.Anti-arrhythmic drugs are t...Atrial fibrillation(AF)is one of the most common arrhythmias,associated with high morbidity,mortality,and healthcare costs,and it places a significant burden on both individuals and society.Anti-arrhythmic drugs are the most commonly used strategy for treating AF.However,drug therapy faces challenges because of its limited efficacy and potential side effects.Catheter ablation is widely used as an alternative treatment for AF.Nevertheless,because the mechanism of AF is not fully understood,the recurrence rate after ablation remains high.In addition,the outcomes of ablation can vary significantly between medical institutions and patients,especially for persistent AF.Therefore,the issue of which ablation strategy is optimal is still far from settled.Computational modeling has the advantages of repeatable operation,low cost,freedom from risk,and complete control,and is a useful tool for not only predicting the results of different ablation strategies on the same model but also finding optimal personalized ablation targets for clinical reference and even guidance.This review summarizes three-dimensional computational modeling simulations of catheter ablation for AF,from the early-stage attempts such as Maze III or circumferential pulmonary vein isolation to the latest advances based on personalized substrate-guided ablation.Finally,we summarize current developments and challenges and provide our perspectives and suggestions for future directions.展开更多
A 3-D computationalframework was suggested to model stable growth of a macroscopic crack under model I condition. The Gurson-Tverpaaof dilatant plasticity model for voided materials describes the damage process. Fixed...A 3-D computationalframework was suggested to model stable growth of a macroscopic crack under model I condition. The Gurson-Tverpaaof dilatant plasticity model for voided materials describes the damage process. Fixed-sized, computational cell elements (containing voids) defined over a thin layer at the cmck plane simulate the ductile crack extension. Outside of this layer, the material remains undamaged by the void growth. The micro-mechanics parumeters controlling cmck growth are the thickness Of computational cell layen D, and the initial void porosity, fo. These parameters are calculated through analyses of ductile tearing to match R-curve obtained from testing of deep notch bend specimens for welded joints. The R-curve for the double edge notched tension specimens is eNctively predicted using these pammeters.The predicted R-curve gives a good agreement with the expemment results.展开更多
Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM)...Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM) is the first step of the transformation.This paper proposes an approach for this transformation with pattern.In this approach, we take advantage of"reuse"from various standpoints.Feature model is used to describe the requirement of the application.This can help us bring"reuse"into effect at requirement level.Moreover we use pattern to transform CIM to PIM.This can help us bring"reuse"into effect at development level.Meanwhile, pattern was divided into four hierarchies.Different hierarchies of pattern are used to help us utilize reuse at different phase of development.From another standpoint, feature model describes the problem of a domain while pattern describe the problem across domains.This can help us reuse the element in and across domains.Finally, the detailed process of the transformation is given.展开更多
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor...Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.展开更多
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r...The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.展开更多
The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see...The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see part 1 of this paper), increases quickly very close to the cavity, but requires a very long time for the remaining part of the sample to absorb the moisture in wetting. For this configuration and this material, the macroscopic approach fails. Consequently, a dual-porosity approach is proposed. The computational domain uses a 2-D axisymmetric configuration for which the axial coordinate represents the macroscopic longitudinal direction of the sample whereas the radial coordinate allows the slow migration from each active vessel towards the fibre zone to be considered. The latter is a microscopic space variable. The moisture content field evolution depicts clearly the dual scale mechanisms:a very fast longitudinal migration in the vessel followed by a slow migration from the vessel towards the fibre zone.The macroscopic moisture content field resulting from this dual scale mechanism is in quite good agreement with the experimental data.展开更多
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cle...Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.展开更多
基金financial support from the Centro de Matematica da Universidade doMinho(CMAT/UM),through project UID/00013.
文摘Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings.
基金supported by the Major Research Instrument Development Project of the National Natural Science Foundation of China(82327810)the Foundation of the President of Hebei University(XZJJ202202)the Hebei Province“333 talent project”(A202101058).
文摘Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
基金financially by the National Research Council of Thailand(NRCT)under Contract No.N42A670894.
文摘This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.
基金supported by the National Natural Science Foundation of China(Grant Numbers:12172149 and 12172151).
文摘Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runaway is the key scientific problem in battery safety research,which can cause fire and even lead to battery explosion under impact loading.In this work,a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established.The detailed computational model,including the anode,cathode,separator,winding,and battery casing,is then developed under the indentation condition.The failure criteria are subsequently established based on the force–displacement curve and the separator failure.Two methods for improving the anti-short circuit ability are proposed.Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.
基金supported by the Natural Science Foundation of Hunan Province(Grant No.2023JJ40353)the National Key Research and Development Program of China(No.2019YFE03120001).
文摘Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the sufficient content of Si is critical for achieving these favorable performances,while excessive Si addition will result in mechanical brittleness.Herein,both physical experiments and finite element(FE)simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys.Four typical states of Si-containing Ti alloys(solid solution state,hypoeutectoid state,near-eutectoid state,hypereutectoid state)with varying Si content(0.3-1.2 wt.%)were fabricated via in-situ alloying spark plasma sintering.Experimental results indicate that in-situ alloying of 0.6 wt.%Si enhances the alloy’s strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti_(5)Si_(3)particles,while higher content of Si(0.9 and 1.2 wt.%)results in coarser primary Ti_(5)Si_(3)agglomerations,deteriorating the ductility.FE simulations support these findings,highlighting the finer and more uniformly distributed Ti_(5)Si_(3)particles contribute to less stress concentration and promote uniform deformation across the matrix,while agglomerated Ti_(5)Si_(3)particles result in increased local stress concentrations,leading to higher chances of particle fracture and reduced ductility.This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Si-containing Ti alloys.
基金the Hainan Provincial Natural Science Foundation of China(No.820RC625)the National Natural Science Foundation of China(No.82060332)。
文摘The underlying electrophysiological mechanisms and clinical treatments of cardiovascular diseases,which are the most common cause of morbidity and mortality worldwide,have gotten a lot of attention and been widely explored in recent decades.Along the way,techniques such as medical imaging,computing modeling,and artificial intelligence(AI)have always played significant roles in above studies.In this article,we illustrated the applications of AI in cardiac electrophysiological research and disease prediction.We summarized general principles of AI and then focused on the roles of AI in cardiac basic and clinical studies incorporating magnetic resonance imaging and computing modeling techniques.The main challenges and perspectives were also analyzed.
文摘In the paper the phenomena of atomization flow are described and a computation model of atomization flow is proposed.Formulas or methods of calculating various affected areas for at- omization flow are presented.
文摘In this paper, we propose a decentralized parallel computation model for global optimization using interval analysis. The model is adaptive to any number of processors and the workload is automatically and evenly distributed among all processors by alternative message passing. The problems received by each processor are processed based on their local dominance properties, which avoids unnecessary interval evaluations. Further, the problem is treated as a whole at the beginning of computation so that no initial decomposition scheme is required. Numerical experiments indicate that the model works well and is stable with different number of parallel processors, distributes the load evenly among the processors, and provides an impressive speedup, especially when the problem is time-consuming to solve.
基金funding from the Helmholtz-Incubator project Uncertainty Quantification.
文摘Magnesium alloys are highly attractive for the use as temporary implant materials,due to their high biocompatibility and biodegradability.However,the prediction of the degradation rate of the implants is difficult,therefore,a large number of experiments are required.Computational modelling can aid in enabling the predictability,if sufficiently accurate models can be established.This work presents a generalized model of the degradation of pure magnesium in simulated body fluid over the course of 28 days considering uncertainty aspects.The model includes the computation of the metallic material thinning and is calibrated using the mean degradation depth of several experimental datasets simultaneously.Additionally,the formation and precipitation of relevant degradation products on the sample surface is modelled,based on the ionic composition of simulated body fluid.The computed mean degradation depth is in good agreement with the experimental data(NRMSE=0.07).However,the quality of the depth profile curves of the determined elemental weight percentage of the degradation products differs between elements(such as NRMSE=0.40 for phosphorus vs.NRMSE=1.03 for magnesium).This indicates that the implementation of precipitate formation may need further developments.The sensitivity analysis showed that the model parameters are correlated and which is related to the complexity and the high computational costs of the model.Overall,the model provides a correlating fit to the experimental data of pure Mg samples of different geometries degrading in simulated body fluid with reliable error estimation.
基金supported by the "Mechanical Virtual Human of China"project funded by the National Natural Science Foundation of China(30530230)further support was from the UK Royal Scoiety(Grant:IPJ/2006/R3)
文摘Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an in vivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finite element model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental data for validation were both collected from the same volunteer subject.The validated components included the comparison of static model predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalent measured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneously during six different loaded standing conditions.The predictions of the current FE model were in good agreement with these experimental results.
基金Project supported by the National Natural Science Foundation of China(Nos.11932003 and 11772019)。
文摘Biophysical computational models are complementary to experiments and theories,providing powerful tools for the study of neurological diseases.The focus of this review is the dynamic modeling and control strategies of Parkinson’s disease(PD).In previous studies,the development of parkinsonian network dynamics modeling has made great progress.Modeling mainly focuses on the cortex-thalamus-basal ganglia(CTBG)circuit and its sub-circuits,which helps to explore the dynamic behavior of the parkinsonian network,such as synchronization.Deep brain stimulation(DBS)is an effective strategy for the treatment of PD.At present,many studies are based on the side effects of the DBS.However,the translation from modeling results to clinical disease mitigation therapy still faces huge challenges.Here,we introduce the progress of DBS improvement.Its specific purpose is to develop novel DBS treatment methods,optimize the treatment effect of DBS for each patient,and focus on the study in closed-loop DBS.Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment.
文摘Ca^2+ dysregulation is an early event observed in Alzheimer's disease(AD) patients preceding the presence of its clinical symptoms.Dysregulation of neuronalCa^2+ will cause synaptic loss and neuronal death,eventually leading to memory impairments and cognitive decline.Treatments targetingCa^2+ signaling pathways are potential therapeutic strategies against AD.The complicated interactions make it challenging and expensive to study the underlying mechanisms as to how Ca^2+ signaling contributes to the pathogenesis of AD.Computational modeling offers new opportunities to study the signaling pathway and test proposed mechanisms.In this mini-review,we present some computational approaches that have been used to study Ca^2+ dysregulation of AD by simulating Ca^2+signaling at various levels.We also pointed out the future directions that computational modeling can be done in studying the Ca^2+ dysregulation in AD.
基金This work was supported by the National Natural Science Foundation of China(Nos.81901841 and 61527811)the Key Research and Development Program of Zhejiang Province(No.2020C03016)the Dalian University of Technology(No.DUT18RC(3)068),China.
文摘Atrial fibrillation(AF)is one of the most common arrhythmias,associated with high morbidity,mortality,and healthcare costs,and it places a significant burden on both individuals and society.Anti-arrhythmic drugs are the most commonly used strategy for treating AF.However,drug therapy faces challenges because of its limited efficacy and potential side effects.Catheter ablation is widely used as an alternative treatment for AF.Nevertheless,because the mechanism of AF is not fully understood,the recurrence rate after ablation remains high.In addition,the outcomes of ablation can vary significantly between medical institutions and patients,especially for persistent AF.Therefore,the issue of which ablation strategy is optimal is still far from settled.Computational modeling has the advantages of repeatable operation,low cost,freedom from risk,and complete control,and is a useful tool for not only predicting the results of different ablation strategies on the same model but also finding optimal personalized ablation targets for clinical reference and even guidance.This review summarizes three-dimensional computational modeling simulations of catheter ablation for AF,from the early-stage attempts such as Maze III or circumferential pulmonary vein isolation to the latest advances based on personalized substrate-guided ablation.Finally,we summarize current developments and challenges and provide our perspectives and suggestions for future directions.
文摘A 3-D computationalframework was suggested to model stable growth of a macroscopic crack under model I condition. The Gurson-Tverpaaof dilatant plasticity model for voided materials describes the damage process. Fixed-sized, computational cell elements (containing voids) defined over a thin layer at the cmck plane simulate the ductile crack extension. Outside of this layer, the material remains undamaged by the void growth. The micro-mechanics parumeters controlling cmck growth are the thickness Of computational cell layen D, and the initial void porosity, fo. These parameters are calculated through analyses of ductile tearing to match R-curve obtained from testing of deep notch bend specimens for welded joints. The R-curve for the double edge notched tension specimens is eNctively predicted using these pammeters.The predicted R-curve gives a good agreement with the expemment results.
基金supported by the National Natural Science Foundation of China (Grant No.601730301)the National BasicResearch Program of China (973 Program) (Grant No.2002CB312001)
文摘Model driven architecture(MDA) is an evolutionary step in software development.Model transformation forms a key part of MDA.The transformation from computation independent model(CIM) to platform independent model(PIM) is the first step of the transformation.This paper proposes an approach for this transformation with pattern.In this approach, we take advantage of"reuse"from various standpoints.Feature model is used to describe the requirement of the application.This can help us bring"reuse"into effect at requirement level.Moreover we use pattern to transform CIM to PIM.This can help us bring"reuse"into effect at development level.Meanwhile, pattern was divided into four hierarchies.Different hierarchies of pattern are used to help us utilize reuse at different phase of development.From another standpoint, feature model describes the problem of a domain while pattern describe the problem across domains.This can help us reuse the element in and across domains.Finally, the detailed process of the transformation is given.
基金Supported by the National Key R&D Program of China under Grant No 2016YFB0400104
文摘Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.
文摘The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.
文摘The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see part 1 of this paper), increases quickly very close to the cavity, but requires a very long time for the remaining part of the sample to absorb the moisture in wetting. For this configuration and this material, the macroscopic approach fails. Consequently, a dual-porosity approach is proposed. The computational domain uses a 2-D axisymmetric configuration for which the axial coordinate represents the macroscopic longitudinal direction of the sample whereas the radial coordinate allows the slow migration from each active vessel towards the fibre zone to be considered. The latter is a microscopic space variable. The moisture content field evolution depicts clearly the dual scale mechanisms:a very fast longitudinal migration in the vessel followed by a slow migration from the vessel towards the fibre zone.The macroscopic moisture content field resulting from this dual scale mechanism is in quite good agreement with the experimental data.
基金TheNationalNaturalScienceFoundationofChina (No .5 9776 0 2 5 )andtheHi TechResearchandDevelopmentProgramofChina (S 86 3No.2 0 0 1AA3330 40 ) )
文摘Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.