Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and...Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources,adding a substantial burden to the healthcare system and patients'families.In this context,chondroitinase ABC,a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals,has emerged as a promising therapeutic agent.It works by degrading chondroitin sulfate proteoglycans,cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides.Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains.Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting,enhancing the plasticity of perineuronal nets,inhibiting neuronal apoptosis,and modulating immune responses in various animal models.In this review,we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury.We also highlight research advancements in spinal cord injury treatment strategies,with a focus on chondroitinase ABC,and illustrate how improvements in chondroitinase ABC stability,enzymatic activity,and delivery methods have enhanced injured spinal cord repair.Furthermore,we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy.This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC-based spinal cord injury therapies,with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.展开更多
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r...The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.展开更多
基金supported by the National Natural Science Foundation of China,No.82002645China Postdoctoral Science Foundation,No.2022M722321Jiangsu Funding Program for Excellent Postdoctoral Talent,No.2022ZB552(all to YH)。
文摘Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources,adding a substantial burden to the healthcare system and patients'families.In this context,chondroitinase ABC,a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals,has emerged as a promising therapeutic agent.It works by degrading chondroitin sulfate proteoglycans,cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides.Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains.Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting,enhancing the plasticity of perineuronal nets,inhibiting neuronal apoptosis,and modulating immune responses in various animal models.In this review,we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury.We also highlight research advancements in spinal cord injury treatment strategies,with a focus on chondroitinase ABC,and illustrate how improvements in chondroitinase ABC stability,enzymatic activity,and delivery methods have enhanced injured spinal cord repair.Furthermore,we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy.This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC-based spinal cord injury therapies,with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development.
文摘The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.