It has been over a decade since the first coded aperture video compressive sensing(CS)system was reported.The underlying principle of this technology is to employ a high-frequency modulator in the optical path to modu...It has been over a decade since the first coded aperture video compressive sensing(CS)system was reported.The underlying principle of this technology is to employ a high-frequency modulator in the optical path to modulate a recorded high-speed scene within one integration time.The superimposed image captured in this manner is modulated and compressed,since multiple modulation patterns are imposed.Following this,reconstruction algorithms are utilized to recover the desired high-speed scene.One leading advantage of video CS is that a single captured measurement can be used to reconstruct a multi-frame video,thereby enabling a low-speed camera to capture high-speed scenes.Inspired by this,a number of variants of video CS systems have been built,mainly using different modulation devices.Meanwhile,in order to obtain high-quality reconstruction videos,many algorithms have been developed,from optimization-based iterative algorithms to deep-learning-based ones.Recently,emerging deep learning methods have been dominant due to their high-speed inference and high-quality reconstruction,highlighting the possibility of deploying video CS in practical applications.Toward this end,this paper reviews the progress that has been achieved in video CS during the past decade.We further analyze the efforts that need to be made—in terms of both hardware and algorithms—to enable real applications.Research gaps are put forward and future directions are summarized to help researchers and engineers working on this topic.展开更多
In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and ot...In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected o...To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.展开更多
Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compress...Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method.展开更多
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur...In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple inpu...Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple input multiple output(MIMO),the MBM scheme achieves better performance than other conventional multiuser MIMO schemes.In this paper,the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed.This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots,which exploits the structured sparsity of these aggregate MBM signals.Under this kind of scenario,a multiuser detector with low complexity based on the compressive sensing(CS)theory to gain better detection performance is proposed.This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit(CoSaMP)and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals.By exploiting these sparsity,the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity.Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods.展开更多
Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirem...Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization.展开更多
In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical m...In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.展开更多
Location-Based Services have become an indispensable part of our daily life, the sparsity of location finding makes it possible to estimate specific position by Compressive Sensing(CS). Using public Frequency Modulati...Location-Based Services have become an indispensable part of our daily life, the sparsity of location finding makes it possible to estimate specific position by Compressive Sensing(CS). Using public Frequency Modulation(FM) broadcasting and Digital Television Terrestrial Multimedia Broadcasting(DTMB) signals, this paper presents an indoor positioning scheme, which is consisted of an offline stage and an online stage. In the offline stage, the Received Signal Strength(RSS) at the Reference Points(RPs) is measured, including the average and variance of public FM broadcasting and DTMB signals. In the online stage, the K-Weighted Nearest Neighbor algorithm is used to fulfill coarse positioning, which is able to narrow the selection scope of locations and choose partial RPs for accurate positioning. Then, the accurate positioning is implemented through CS. Experiment shows that the average positioning error of the proposed scheme is 1.63 m. What’s more, a CS-based method has been proposed in this paper to reduce the labor cost when collecting data. Experiment shows the average positioning error is 2.04 m, with the advantage of a 34% labor cost reduction. Experiment results indicate that the proposed system is a practical indoor positioning scheme.展开更多
In digital signal processing (DSP), Nyquistrate sampling completely describes a signal by exploiting its bandlimitedness. Compressed Sensing (CS), also known as compressive sampling, is a DSP technique efficiently acq...In digital signal processing (DSP), Nyquistrate sampling completely describes a signal by exploiting its bandlimitedness. Compressed Sensing (CS), also known as compressive sampling, is a DSP technique efficiently acquiring and reconstructing a signal completely from reduced number of measurements, by exploiting its compressibility. The measurements are not point samples but more general linear functions of the signal. CS can capture and represent sparse signals at a rate significantly lower than ordinarily used in the Shannon’s sampling theorem. It is interesting to notice that most signals in reality are sparse;especially when they are represented in some domain (such as the wavelet domain) where many coefficients are close to or equal to zero. A signal is called K-sparse, if it can be exactly represented by a basis, , and a set of coefficients , where only K coefficients are nonzero. A signal is called approximately K-sparse, if it can be represented up to a certain accuracy using K non-zero coefficients. As an example, a K-sparse signal is the class of signals that are the sum of K sinusoids chosen from the N harmonics of the observed time interval. Taking the DFT of any such signal would render only K non-zero values . An example of approximately sparse signals is when the coefficients , sorted by magnitude, decrease following a power law. In this case the sparse approximation constructed by choosing the K largest coefficients is guaranteed to have an approximation error that decreases with the same power law as the coefficients. The main limitation of CS-based systems is that they are employing iterative algorithms to recover the signal. The sealgorithms are slow and the hardware solution has become crucial for higher performance and speed. This technique enables fewer data samples than traditionally required when capturing a signal with relatively high bandwidth, but a low information rate. As a main feature of CS, efficient algorithms such as -minimization can be used for recovery. This paper gives a survey of both theoretical and numerical aspects of compressive sensing technique and its applications. The theory of CS has many potential applications in signal processing, wireless communication, cognitive radio and medical imaging.展开更多
Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibili...Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale "double-slit" image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale "lena" object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using G1 and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale "double-slit" object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time.展开更多
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presen...Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose...In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar(ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explores the use of Gini index to measure the sparsity of ISAR images to improve the imaging quality. Instead of simultaneous perturbation stochastic approximation(SPSA), we use weighted l1 norm as the surrogate functional and successfully develop an iteratively re-weighted algorithm to reconstruct ISAR images from compressed echo samples. Experimental results show that our approach significantly reduces the number of measurements needed for exact reconstruction and effectively suppresses the noise. Both the peak sidelobe ratio(PSLR) and the reconstruction relative error(RE) indicate that the proposed method outperforms the l1 norm based method.展开更多
Compressive sensing (CS) creates a new framework of signal reconstruction or approximation from a smaller set of incoherent projection compared with the traditional Nyquist-rate sampling theory. Recently, it has been ...Compressive sensing (CS) creates a new framework of signal reconstruction or approximation from a smaller set of incoherent projection compared with the traditional Nyquist-rate sampling theory. Recently, it has been shown that CS can solve some signal processing problems given incoherent measurements without ever reconstructing the signals. Moreover, the number of measurements necessary for most compressive signal processing application such as detection, estimation and classification is lower than that necessary for signal reconstruction. Based on CS, this paper presents a novel identification algorithm of frequency hopping (FH) signals. Given the hop interval, the FH signals can be identified and the hopping frequencies can be estimated with a tiny number of measurements. Simulation results demonstrate that the method is effective and efficient.展开更多
Compressive sampling matching pursuit (CoSaMP) algorithm integrates the idea of combining algorithm to ensure running speed and provides rigorous error bounds which provide a good theoretical guarantee to convergenc...Compressive sampling matching pursuit (CoSaMP) algorithm integrates the idea of combining algorithm to ensure running speed and provides rigorous error bounds which provide a good theoretical guarantee to convergence. And compressive sensing (CS) can help us ease the pressure of hardware facility from the requirements of the huge amount in information processing. Therefore, a new video coding framework was proposed, which was based on CS and curvelet transform in this paper. Firstly, this new framework uses curvelet transform and CS to the key frame of test sequence, and then gains recovery frame via CoSaMP to achieve data compress. In the classic CoSaMP method, the halting criterion is that the number of iterations is fixed. Therefore, a new stopping rule is discussed to halting the algorithm in this paper to obtain better performance. According to a large number of experimental results, we ran see that this new framework has better performance and lower RMSE. Through the analysis of the experimental data, it is found that the selection of number of measurements and sparsity level has great influence on the new framework. So how to select the optimal parameters to gain better performance deserves worthy of further study.展开更多
The sparse nature of location finding in the spatial domain makes it possible to exploit the Compressive Sensing (CS) theory for wireless location.CS-based location algorithm can largely reduce the number of online me...The sparse nature of location finding in the spatial domain makes it possible to exploit the Compressive Sensing (CS) theory for wireless location.CS-based location algorithm can largely reduce the number of online measurements while achieving a high level of localization accuracy,which makes the CS-based solution very attractive for indoor positioning.However,CS theory offers exact deterministic recovery of the sparse or compressible signals under two basic restriction conditions of sparsity and incoherence.In order to achieve a good recovery performance of sparse signals,CS-based solution needs to construct an efficient CS model.The model must satisfy the practical application requirements as well as following theoretical restrictions.In this paper,we propose two novel CS-based location solutions based on two different points of view:the CS-based algorithm with raising-dimension pre-processing and the CS-based algorithm with Minor Component Analysis (MCA).Analytical studies and simulations indicate that the proposed novel schemes achieve much higher localization accuracy.展开更多
基金supported by the National Natural Science Foundation of China(61931012,62171258,62088102,and 62271414)the Zhejiang Provincial Outstanding Youth Science Foundation(LR23F010001)the Key Project of Westlake Institute for Optoelectronics(2023GD007).
文摘It has been over a decade since the first coded aperture video compressive sensing(CS)system was reported.The underlying principle of this technology is to employ a high-frequency modulator in the optical path to modulate a recorded high-speed scene within one integration time.The superimposed image captured in this manner is modulated and compressed,since multiple modulation patterns are imposed.Following this,reconstruction algorithms are utilized to recover the desired high-speed scene.One leading advantage of video CS is that a single captured measurement can be used to reconstruct a multi-frame video,thereby enabling a low-speed camera to capture high-speed scenes.Inspired by this,a number of variants of video CS systems have been built,mainly using different modulation devices.Meanwhile,in order to obtain high-quality reconstruction videos,many algorithms have been developed,from optimization-based iterative algorithms to deep-learning-based ones.Recently,emerging deep learning methods have been dominant due to their high-speed inference and high-quality reconstruction,highlighting the possibility of deploying video CS in practical applications.Toward this end,this paper reviews the progress that has been achieved in video CS during the past decade.We further analyze the efforts that need to be made—in terms of both hardware and algorithms—to enable real applications.Research gaps are put forward and future directions are summarized to help researchers and engineers working on this topic.
基金supported by National Natural Science Foundation of China(12174350)Science and Technology Project of State Grid Henan Electric Power Company(5217Q0240008).
文摘In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金This work was supported by the National Key R&D Program of China(2019YFC1605500,2018YFF01011700)the National Natural Science Foundation of China(21973111)+1 种基金Guangxi Natural Science Foundation(2017GXNSFAA198029)Scientific Development Fund of Guangxi Academy of Sciences(2018YFJ 403).
文摘To overcome the low efficiency of conventional confocal Raman spectroscopy,many efforts have been devoted to parallelizing the Raman excitation and acquisition,in which the scattering from multiple foci is projected onto different locations on a spectrometer's CCD,along either its vertical,horizontal dimension,or even both.While the latter projection scheme relieves the limitation on the row numbers of the CCD,the spectra of multiple foci are recorded in one spectral channel,resulting in spectral overlapping.Here,we developed a method under a com-pressive sensing framework to demultiplex the superimposed spectra of multiple cells during their dynamic processes.Unlike the previous methods which ignore the information connection be-tween the spectra of the cells recorded at different time,the proposed method utilizes a prior that a cell's spectra acquired at different time have the same sparsity structure in their principal components.Rather than independently demultiplexing the mixed spectra at the individual time intervals,the method demultiplexes the whole spectral sequence acquired continuously during the dynamic process.By penalizing the sparsity combined from all time intervals,the collaborative optimization of the inversion problem gave more accurate recovery results.The performances of the method were substantiated by a 1D Raman tweezers array,which monitored the germination of multiple bacterial spores.The method can be extended to the monitoring of many living cells randomly scattering on a coverslip,and has a potential to improve the throughput by a few orders.
文摘Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method.
基金The National Natural Science Foundation of China (No.60872075)the National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)
文摘In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
文摘Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple input multiple output(MIMO),the MBM scheme achieves better performance than other conventional multiuser MIMO schemes.In this paper,the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed.This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots,which exploits the structured sparsity of these aggregate MBM signals.Under this kind of scenario,a multiuser detector with low complexity based on the compressive sensing(CS)theory to gain better detection performance is proposed.This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit(CoSaMP)and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals.By exploiting these sparsity,the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity.Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods.
基金supported by National science foundation(No. 60772035): Key technique study on heterogeneous network convergenceDoctoral grant(No.20070004010)s: Study on cross layer design for heterogeneous network convergence+1 种基金National 863 Hi-Tech Projects(No.2007AA01Z277): Pa-rameter design based electromagnetic compatibility study in cognitive radio communication systemNational science foundation(No. 60830001): Wireless communication fundamentals and key techniuqes for high speed rail way control and safety data transmission
文摘Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization.
基金supported by the National High Technology Research and Development Program of China(No.2014AA06A602)National Natural Science Foundation of China(No.41404111)Natural Science Foundation of Hunan Province(No.2015JJ3088)
文摘In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.
基金supported in part by the National Natural Science Foundation of China under grant No.61571244 and No.61871239in part by Tianjin Research Program of Application Foundation and Advanced Technology under grant No.16YFZCSF00540 and No.18YFZCGX00480
文摘Location-Based Services have become an indispensable part of our daily life, the sparsity of location finding makes it possible to estimate specific position by Compressive Sensing(CS). Using public Frequency Modulation(FM) broadcasting and Digital Television Terrestrial Multimedia Broadcasting(DTMB) signals, this paper presents an indoor positioning scheme, which is consisted of an offline stage and an online stage. In the offline stage, the Received Signal Strength(RSS) at the Reference Points(RPs) is measured, including the average and variance of public FM broadcasting and DTMB signals. In the online stage, the K-Weighted Nearest Neighbor algorithm is used to fulfill coarse positioning, which is able to narrow the selection scope of locations and choose partial RPs for accurate positioning. Then, the accurate positioning is implemented through CS. Experiment shows that the average positioning error of the proposed scheme is 1.63 m. What’s more, a CS-based method has been proposed in this paper to reduce the labor cost when collecting data. Experiment shows the average positioning error is 2.04 m, with the advantage of a 34% labor cost reduction. Experiment results indicate that the proposed system is a practical indoor positioning scheme.
文摘In digital signal processing (DSP), Nyquistrate sampling completely describes a signal by exploiting its bandlimitedness. Compressed Sensing (CS), also known as compressive sampling, is a DSP technique efficiently acquiring and reconstructing a signal completely from reduced number of measurements, by exploiting its compressibility. The measurements are not point samples but more general linear functions of the signal. CS can capture and represent sparse signals at a rate significantly lower than ordinarily used in the Shannon’s sampling theorem. It is interesting to notice that most signals in reality are sparse;especially when they are represented in some domain (such as the wavelet domain) where many coefficients are close to or equal to zero. A signal is called K-sparse, if it can be exactly represented by a basis, , and a set of coefficients , where only K coefficients are nonzero. A signal is called approximately K-sparse, if it can be represented up to a certain accuracy using K non-zero coefficients. As an example, a K-sparse signal is the class of signals that are the sum of K sinusoids chosen from the N harmonics of the observed time interval. Taking the DFT of any such signal would render only K non-zero values . An example of approximately sparse signals is when the coefficients , sorted by magnitude, decrease following a power law. In this case the sparse approximation constructed by choosing the K largest coefficients is guaranteed to have an approximation error that decreases with the same power law as the coefficients. The main limitation of CS-based systems is that they are employing iterative algorithms to recover the signal. The sealgorithms are slow and the hardware solution has become crucial for higher performance and speed. This technique enables fewer data samples than traditionally required when capturing a signal with relatively high bandwidth, but a low information rate. As a main feature of CS, efficient algorithms such as -minimization can be used for recovery. This paper gives a survey of both theoretical and numerical aspects of compressive sensing technique and its applications. The theory of CS has many potential applications in signal processing, wireless communication, cognitive radio and medical imaging.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271238)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)the University Natural Science Research Foundation of Jiangsu Province,China(Grant No.11KJA510002)
文摘Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale "double-slit" image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale "lena" object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using G1 and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale "double-slit" object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time.
基金Supported by the National Natural Science Foundation of China (No. 61073079)the Fundamental Research Funds for the Central Universities (2011JBM216,2011YJS021)
文摘Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
基金supported by National Natural Science Foundationof China(Nos.61071146,61171165 and 61301217)Natural ScienceFoundation of Jiangsu Province(No.BK2010488)National Scientific Equipment Developing Project of China(No.2012YQ050250)
文摘In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar(ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explores the use of Gini index to measure the sparsity of ISAR images to improve the imaging quality. Instead of simultaneous perturbation stochastic approximation(SPSA), we use weighted l1 norm as the surrogate functional and successfully develop an iteratively re-weighted algorithm to reconstruct ISAR images from compressed echo samples. Experimental results show that our approach significantly reduces the number of measurements needed for exact reconstruction and effectively suppresses the noise. Both the peak sidelobe ratio(PSLR) and the reconstruction relative error(RE) indicate that the proposed method outperforms the l1 norm based method.
文摘Compressive sensing (CS) creates a new framework of signal reconstruction or approximation from a smaller set of incoherent projection compared with the traditional Nyquist-rate sampling theory. Recently, it has been shown that CS can solve some signal processing problems given incoherent measurements without ever reconstructing the signals. Moreover, the number of measurements necessary for most compressive signal processing application such as detection, estimation and classification is lower than that necessary for signal reconstruction. Based on CS, this paper presents a novel identification algorithm of frequency hopping (FH) signals. Given the hop interval, the FH signals can be identified and the hopping frequencies can be estimated with a tiny number of measurements. Simulation results demonstrate that the method is effective and efficient.
基金the Youth Foundation of Jiangxi Provincial Education Department,China
文摘Compressive sampling matching pursuit (CoSaMP) algorithm integrates the idea of combining algorithm to ensure running speed and provides rigorous error bounds which provide a good theoretical guarantee to convergence. And compressive sensing (CS) can help us ease the pressure of hardware facility from the requirements of the huge amount in information processing. Therefore, a new video coding framework was proposed, which was based on CS and curvelet transform in this paper. Firstly, this new framework uses curvelet transform and CS to the key frame of test sequence, and then gains recovery frame via CoSaMP to achieve data compress. In the classic CoSaMP method, the halting criterion is that the number of iterations is fixed. Therefore, a new stopping rule is discussed to halting the algorithm in this paper to obtain better performance. According to a large number of experimental results, we ran see that this new framework has better performance and lower RMSE. Through the analysis of the experimental data, it is found that the selection of number of measurements and sparsity level has great influence on the new framework. So how to select the optimal parameters to gain better performance deserves worthy of further study.
基金supported by the National Natural Science Foundation of China under Grant No.61001119the Fund for Creative Research Groups of China under Grant No.61121001
文摘The sparse nature of location finding in the spatial domain makes it possible to exploit the Compressive Sensing (CS) theory for wireless location.CS-based location algorithm can largely reduce the number of online measurements while achieving a high level of localization accuracy,which makes the CS-based solution very attractive for indoor positioning.However,CS theory offers exact deterministic recovery of the sparse or compressible signals under two basic restriction conditions of sparsity and incoherence.In order to achieve a good recovery performance of sparse signals,CS-based solution needs to construct an efficient CS model.The model must satisfy the practical application requirements as well as following theoretical restrictions.In this paper,we propose two novel CS-based location solutions based on two different points of view:the CS-based algorithm with raising-dimension pre-processing and the CS-based algorithm with Minor Component Analysis (MCA).Analytical studies and simulations indicate that the proposed novel schemes achieve much higher localization accuracy.