A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experime...A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experimental alloy was investigated.The results indicate that the average size ofα-Mg grains decreases and spheroidizing tendency becomes more obvious with the compression ratios increasing from 0 to 40%.In addition,the eutectic Mg2Si phase in the Mg−10%Al−1%Zn−1%Si alloy transforms completely from the initial fishbone shape to globular shape by SIMA process.With the increasing of compression ratio,the morphology and average size of Mg2Si phases do not change obviously.The morphology modification mechanism of Mg2Si phase in Mg−10%Al−1%Zn−1%Si alloy by SIMA process was also studied.展开更多
Knock in spark-ignition(SI)engines severely limits engine performance and thermal efficiency.The researches on knock of downsized SI engine have mainly focused on structural design,performance optimization and advance...Knock in spark-ignition(SI)engines severely limits engine performance and thermal efficiency.The researches on knock of downsized SI engine have mainly focused on structural design,performance optimization and advanced combustion modes,however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR)combined with downsizing technologies on SI engine performance.On the basis of mean pressure and oscillating pressure during combustion process,the effect of different levels of cooled EGR ratio,supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation.The cylinder pressure,combustion temperature,ignition delay timing,combustion duration,maximum mean pressure,and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output.The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure.Analysis of the synergistic effect of cooled EGR,supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio,several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively.The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic,analyzed from the aspects of mean pressure and oscillating pressure,is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.展开更多
Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity an...Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.展开更多
The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribut...The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribution of the current in the grid is not uniform.Hence,unequal grid conductor span in which grid conductors are concentrated more at the periphery is safer to practice than equal spacing.This paper presents the comparative analysis of two novel techniques that create unequal spacing among the grid conductors:the least-square curve fitting technique and the compression ratio techniquewith equal grid configuration for both square and rectangular grids.Particle Swarm Optimization(PSO)is adopted for finding out one optimal feasible solution among many feasible solutions of equal grid configuration for both square and rectangular grids.Comparative analysis is also carried out between square and rectangular grids using the least square curve fitting technique as it results in only one unequal grid configuration.Simulation results are obtained by theMATLAB software developed.Percentage of improvement in ground potential rise,step voltage,touch voltage,and grid resistancewith variation in compression ratios are plotted.展开更多
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more...The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.展开更多
The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to t...The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to the IoT systems demands a communication network capable of handling vast amounts of data with minimal delay.These generated enormous complex,high-dimensional,high-volume,and high-speed data also brings challenges on its storage,transmission,processing,and energy cost,due to the limited computing capabilities,battery capacity,memory,and energy utilization of current IoT networks.In this paper,a seamless architecture by combining mobile and cloud computing is proposed.It can agilely bargain with 5G-IoT devices,sensor nodes,and mobile computing in a distributed manner,enabling minimized energy cost,high interoperability,and high scalability as well as overcoming the memory constraints.An artificial intelligence(AI)-powered green and energy-efficient architecture is then proposed for 5G-IoT systems and sustainable smart cities.The experimental results reveal that the proposed approach dramatically reduces the transmitted data volume and power consumption and yields superior results regarding interoperability,compression ratio,and energy saving.This is especially critical in enabling the deployment of 5G and even 6G wireless systems for smart cities.展开更多
Medium shear span ratio reinforced columns are prone to complex failure under seismic action.This paper compares the seismic performance of normal concrete columns and UHPC columns by introducing ultra-high-performanc...Medium shear span ratio reinforced columns are prone to complex failure under seismic action.This paper compares the seismic performance of normal concrete columns and UHPC columns by introducing ultra-high-performance concrete(UHPC).The shear span ratio(2.4-4.4)and axial compression ratio(0.10,0.36)were used as variables,and the bearing capacity,ductility and failure mode were analyzed through low-cycle reciprocating loading studys.The results showed that UHPC significantly improved the bearing capacity,stiffness and energy dissipation capacity of the column,and suppressed the crushing and spalling of concrete.When the shear span ratio is 2.4 and the axial compression ratio is 0.36,the failure mode of UHPC columns was changed from shear failure to flexural shear failure.Thus this study can become a reference for the seismic design of UHPC columns.展开更多
[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of gua...[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.展开更多
The seismic behavior of steel reinforced high strength and high performance concrete (SRHC) frame columns was investigated through pseudo-static experiments of 16 frame columns with various shear span ratios, axial ...The seismic behavior of steel reinforced high strength and high performance concrete (SRHC) frame columns was investigated through pseudo-static experiments of 16 frame columns with various shear span ratios, axial compression ratios, concrete strengths, steel ratios and stirrup ratios. Three kinds of failure mechanisms are presented and the characteristics of experimental hysteretic curves and skeleton curves with different design parameters are discussed. The columns' ductility and energy dissipation were quantitatively evaluated based on seismic resistance. The research results indicate that SRHC frame columns can withstand extreme bearing capacity, but the abilities of ductility and energy dissipation are inferior because of SRHC's natural brittleness. As a result, the axial load ratio should be restricted and some construction measures adopted, such as increasing the stirrup ratio. This research established effect factors on the bearing capacity of SPHC columns. Finally, an algorithm for obtaining ultimate bearing capacity using the flexural failure mode is established based on a modified plane- section assumption. The authors also established equations to determine shearing baroclinic failure and shear bond failure based on the accumulation of the axial load force distribution ratio. The calculated results of shear bearing capacity for different failure modes were in good agreement with the experimental results.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
304 stainless steel(SS)/Q235 carbon steel(CS)bimetallic composite shafts were prepared by the cross wedge rolling(CWR).The bonding interface welding mechanism was investigated through CWR rolling experiments and finit...304 stainless steel(SS)/Q235 carbon steel(CS)bimetallic composite shafts were prepared by the cross wedge rolling(CWR).The bonding interface welding mechanism was investigated through CWR rolling experiments and finite element simulation,as well as element diffusion,microstructure analysis,and mechanical property tests.According to simulation studies,the bonding interface is primarily subjected to three-directional compressive stresses at the tool-workpiece contact zone.As compression ratio increases from 0.25 to 0.35,the interface of the stress penetration area increases,while the diameter and wall thickness of CS/SS bimetallic shaft decrease,and hence,thickness-to-diameter ratio remains unchanged,which is conducive to the coordinated deformation of inner and outer metals and the interface of welded joints.The microstructure analysis of the interface shows that there are no obvious defects and cracks in the attachment,and that the microstructure on CS side is dominated by ferrite and martensite phases.Caused by the decarburization effect,Q235 steel microstructure features coarse ferrite,accompanied by a carburized layer with a thickness of about 20μm on SS side near the interface where grains are refined.As radial compression ratio increases,the diffusion distance of Cr,Ni,and other elements increases,the average thickness of the decarburized layer decreases,the interfacial bonding strength increases from 450 to 490 MPa,and metallurgical bonding at the interface is thus improved.The study demonstrates that it is feasible to use 304 SS and Q235 CS for cross wedge rolling composite shafts.展开更多
The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and ...The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and saving the structured grid are proposed.In the present method,the geometric coordinates of the six logical domains of one grid block is saved instead of all grid vertex coordinates to reduce the size of the structured grid file when the grid is compressed.And all grid vertex coordinates are recovered from the compressed data with the use of the transfinite interpolation algorithm when the grid is decompressed.Firstly,single-block grid cases with different edge vertexes are tested to investigate the compression effect.The test results show that a higher compression ratio will be obtained on a larger grid.Secondly,further theoretical analysis is carried out to investigate the effects of parameters on grid compression.The analysis on single-block grid compression shows that the compression ratio is proportionate to the cubic root of the number of total vertexes.The highest compression ratio of single-block grid is obtained when the numbers of vertexes in three logical directions are equal.The analysis on multi-block grid compression shows that a higher compression ratio will be obtained when a larger difference of total vertexes number exists among the grid blocks.Finally,multi-blockgrids of two industrial aircraft configurations are compressed to validate the method.The compression results demonstrate that the present method has an excellent ability on structured grid compression.For a million-vertex structured grid,more than 80 percent disk space can be saved after compression.展开更多
The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is bas...The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.展开更多
It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite c...It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS) and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.展开更多
GMT-sheet is used in automobile bumper with high rigidity and strength, and its joining strength is influenced by lap length, one of the joined molding conditions. Fracture strength was calculated by dividing fracture...GMT-sheet is used in automobile bumper with high rigidity and strength, and its joining strength is influenced by lap length, one of the joined molding conditions. Fracture strength was calculated by dividing fracture load with cross-sectional area. Total five repeated measurements were made to obtain the average value. Tensile test was conducted at room temperature for 10 specimens. In addition, the effect of compression ratio on creep and tensile performance during lap joined molding was discussed. With increasing lap length, the lap joining efficiency of GMT-sheet was increased. However, higher compression ratio reduced the joining efficiency. Creep test on GMT-sheet showed abrupt fracture without tertiary creep. This can be explained by the weak thermal resistance of the resin. If GMT-sheet was exposed to high temperature for a long time, it was easily failed by external force.展开更多
At present,there are few studies on the phase transition during the thermocompression plastic deformation of magnesium alloy.In this study,the evolution model of thermal compression plastic of AZ31 magnesium alloy was...At present,there are few studies on the phase transition during the thermocompression plastic deformation of magnesium alloy.In this study,the evolution model of thermal compression plastic of AZ31 magnesium alloy was constructed by molecular dynamics,and the phase transition relationship between HCP and FCC at different thermal compression rates was studied.By combining GLEEBLE thermal compression experiment with transmission electron microscopy experiment,high-resolution transmission electron microscopy images were taken to analyze the transition rules between HCP and FCC during plastic deformation at different thermal compression rates,and the accuracy of molecular dynamics analysis was verified.It is found that the slip of Shockley’s incomplete dislocation produces obvious HCP→FCC phase transition at low strain rate and base plane dislocation at high strain rate,which makes the amorphous phase transition of HCP→OTHER more obvious,which provides theoretical guidance for the formulation of forming mechanism and preparation process of magnesium alloy.展开更多
Nowadays,distance is usually used to evaluate the error of trajectory compression.These methods can effectively indicate the level of geometric similarity between the compressed and the raw trajectory,but it ignores t...Nowadays,distance is usually used to evaluate the error of trajectory compression.These methods can effectively indicate the level of geometric similarity between the compressed and the raw trajectory,but it ignores the velocity error in the compression.To fill the gap of these methods,assuming the velocity changes linearly,a mathematical model called SVE(Time Synchronized Velocity Error)for evaluating compression error is designed,which can evaluate the velocity error effectively,conveniently and accurately.Based on this model,an innovative algorithm called SW-MSVE(Minimum Time Synchronized Velocity Error Based on Sliding Window)is proposed,which can minimize the velocity error in trajectory compression under the premise of local optimization.Two elaborate experiments are designed to demonstrate the advancements of the SVE and the SW-MSVE respectively.In the first experiment,we use the PED,the SED and the SVE to evaluate the error under four compression algorithms,one of which is the SW-MSVE algorithm.The results show that the SVE is less influenced by noise with stronger performance and more applicability.In the second experiment,by marking the raw trajectory,we compare the SW-MSVE algorithm with three others algorithms at information retention.The results show that the SW-MSVE algorithm can take into account both velocity and geometric structure constraints and retains more information of the raw trajectory at the same compression ratio.展开更多
In the field of economy,there are more and more electronic scanning cash images,which need to be compressed in a higher compression ratio.This paper proposes a specific compression algorithm for cash images.First,acco...In the field of economy,there are more and more electronic scanning cash images,which need to be compressed in a higher compression ratio.This paper proposes a specific compression algorithm for cash images.First,according to cash image characteristics and standard JPEG(joint photographic experts group)compression,image re-ordering techniques are analyzed,and the method of modifying some blocks into single color blocks is adopted.Then,a suitable quantization table for cash images is obtained.Experimental results show that the method is effective.展开更多
This paper introduced an efficient compression technique that uses the compressive sensing(CS)method to obtain and recover sparse electrocardiography(ECG)signals.The recovery of the signal can be achieved by using sam...This paper introduced an efficient compression technique that uses the compressive sensing(CS)method to obtain and recover sparse electrocardiography(ECG)signals.The recovery of the signal can be achieved by using sampling rates lower than the Nyquist frequency.A novel analysis was proposed in this paper.To apply CS on ECG signal,the first step is to generate a sparse signal,which can be obtained using Modified Discrete Cosine Transform(MDCT)on the given ECGsignal.This transformation is a promising key for other transformations used in this search domain and can be considered as the main contribution of this paper.A small number of wavelet components can describe the ECG signal as related work to obtain a sparse ECGsignal.Asensing technique for ECGsignal compression,which is a novel area of research,is proposed.ECG signals are introduced randomly between any successive beats of the heart.MIT-BIH database can be represented as the experimental database in this domain of research.TheMIT-BIH database consists of various ECG signals involving a patient and standard ECG signals.MATLAB can be considered as the simulation tool used in this work.The proposed method’s uniqueness was inspired by the compression ratio(CR)and achieved by MDCT.The performance measurement of the recovered signal was done by calculating the percentage root mean difference(PRD),mean square error(MSE),and peak signal to noise ratio(PSNR)besides the calculation of CR.Finally,the simulation results indicated that this work is one of the most important works in ECG signal compression.展开更多
A novel two-stage spectral compression structure which employs a logarithmic dispersion increasing fiber (DIF) in- terconnected with a highly nonlinear linear fiber-nonlinear optical loop mirror (HNLF-NOLM) is pro...A novel two-stage spectral compression structure which employs a logarithmic dispersion increasing fiber (DIF) in- terconnected with a highly nonlinear linear fiber-nonlinear optical loop mirror (HNLF-NOLM) is proposed and dem- onstrated by numerical simulation. The numerical simulation is implemented by solving the generalized nonlinear SchrOdinger equation using split-step Fourier method, where the soliton number is in the range of 0.5≤N≤1.4. The re- suits show that the spectra are well-compressed and low-pedestal, and the maximum spectral compression ratio (SCR) can reach 10.93 when N=l.4.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.41807235,50674038).
文摘A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experimental alloy was investigated.The results indicate that the average size ofα-Mg grains decreases and spheroidizing tendency becomes more obvious with the compression ratios increasing from 0 to 40%.In addition,the eutectic Mg2Si phase in the Mg−10%Al−1%Zn−1%Si alloy transforms completely from the initial fishbone shape to globular shape by SIMA process.With the increasing of compression ratio,the morphology and average size of Mg2Si phases do not change obviously.The morphology modification mechanism of Mg2Si phase in Mg−10%Al−1%Zn−1%Si alloy by SIMA process was also studied.
基金supported by National Natural Science Foundation of China(Grant No.51176138)Tianjin Municipal Natural Science Foundation of China(Grant No.12TJZDTJ28800)
文摘Knock in spark-ignition(SI)engines severely limits engine performance and thermal efficiency.The researches on knock of downsized SI engine have mainly focused on structural design,performance optimization and advanced combustion modes,however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR)combined with downsizing technologies on SI engine performance.On the basis of mean pressure and oscillating pressure during combustion process,the effect of different levels of cooled EGR ratio,supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation.The cylinder pressure,combustion temperature,ignition delay timing,combustion duration,maximum mean pressure,and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output.The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure.Analysis of the synergistic effect of cooled EGR,supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio,several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively.The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic,analyzed from the aspects of mean pressure and oscillating pressure,is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.
基金Supported by the National Natural Science Foundation of China (No. 61102066)China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No.Y201119890)
文摘Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.
文摘The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribution of the current in the grid is not uniform.Hence,unequal grid conductor span in which grid conductors are concentrated more at the periphery is safer to practice than equal spacing.This paper presents the comparative analysis of two novel techniques that create unequal spacing among the grid conductors:the least-square curve fitting technique and the compression ratio techniquewith equal grid configuration for both square and rectangular grids.Particle Swarm Optimization(PSO)is adopted for finding out one optimal feasible solution among many feasible solutions of equal grid configuration for both square and rectangular grids.Comparative analysis is also carried out between square and rectangular grids using the least square curve fitting technique as it results in only one unequal grid configuration.Simulation results are obtained by theMATLAB software developed.Percentage of improvement in ground potential rise,step voltage,touch voltage,and grid resistancewith variation in compression ratios are plotted.
基金National Natural Science Foundation of China(12102410)Fund of National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2022212005)。
文摘The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.
文摘The convergence of Internet of things(IoT)and 5G holds immense potential for transforming industries by enabling real-time,massive-scale connectivity and automation.However,the growing number of devices connected to the IoT systems demands a communication network capable of handling vast amounts of data with minimal delay.These generated enormous complex,high-dimensional,high-volume,and high-speed data also brings challenges on its storage,transmission,processing,and energy cost,due to the limited computing capabilities,battery capacity,memory,and energy utilization of current IoT networks.In this paper,a seamless architecture by combining mobile and cloud computing is proposed.It can agilely bargain with 5G-IoT devices,sensor nodes,and mobile computing in a distributed manner,enabling minimized energy cost,high interoperability,and high scalability as well as overcoming the memory constraints.An artificial intelligence(AI)-powered green and energy-efficient architecture is then proposed for 5G-IoT systems and sustainable smart cities.The experimental results reveal that the proposed approach dramatically reduces the transmitted data volume and power consumption and yields superior results regarding interoperability,compression ratio,and energy saving.This is especially critical in enabling the deployment of 5G and even 6G wireless systems for smart cities.
基金Experimental Study on Seismic performance of ultra-high Performance Concrete Columns(Project No.:Yu Jiao Ke Fa[2024]No.4 KJQN202403808)。
文摘Medium shear span ratio reinforced columns are prone to complex failure under seismic action.This paper compares the seismic performance of normal concrete columns and UHPC columns by introducing ultra-high-performance concrete(UHPC).The shear span ratio(2.4-4.4)and axial compression ratio(0.10,0.36)were used as variables,and the bearing capacity,ductility and failure mode were analyzed through low-cycle reciprocating loading studys.The results showed that UHPC significantly improved the bearing capacity,stiffness and energy dissipation capacity of the column,and suppressed the crushing and spalling of concrete.When the shear span ratio is 2.4 and the axial compression ratio is 0.36,the failure mode of UHPC columns was changed from shear failure to flexural shear failure.Thus this study can become a reference for the seismic design of UHPC columns.
基金Supported by Special Fund for Scientific Research of Shannxi Education Department(No:2010JK463)Shaanxi Natural Science Foundation(2011JE012)~~
文摘[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.
基金National Key Technology R&D Program under Grant No.2013BAJ08B00the Natural Science Foundation of China under Grant Nos.50978218 and 51108376
文摘The seismic behavior of steel reinforced high strength and high performance concrete (SRHC) frame columns was investigated through pseudo-static experiments of 16 frame columns with various shear span ratios, axial compression ratios, concrete strengths, steel ratios and stirrup ratios. Three kinds of failure mechanisms are presented and the characteristics of experimental hysteretic curves and skeleton curves with different design parameters are discussed. The columns' ductility and energy dissipation were quantitatively evaluated based on seismic resistance. The research results indicate that SRHC frame columns can withstand extreme bearing capacity, but the abilities of ductility and energy dissipation are inferior because of SRHC's natural brittleness. As a result, the axial load ratio should be restricted and some construction measures adopted, such as increasing the stirrup ratio. This research established effect factors on the bearing capacity of SPHC columns. Finally, an algorithm for obtaining ultimate bearing capacity using the flexural failure mode is established based on a modified plane- section assumption. The authors also established equations to determine shearing baroclinic failure and shear bond failure based on the accumulation of the axial load force distribution ratio. The calculated results of shear bearing capacity for different failure modes were in good agreement with the experimental results.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
基金supported by National Key Research and Development Program of China(No.2022YFE0123700)National Natural Science Foundation of China(Grant No.52275307)the Engineering Research Center of Part Rolling,Ministry of Education,China.
文摘304 stainless steel(SS)/Q235 carbon steel(CS)bimetallic composite shafts were prepared by the cross wedge rolling(CWR).The bonding interface welding mechanism was investigated through CWR rolling experiments and finite element simulation,as well as element diffusion,microstructure analysis,and mechanical property tests.According to simulation studies,the bonding interface is primarily subjected to three-directional compressive stresses at the tool-workpiece contact zone.As compression ratio increases from 0.25 to 0.35,the interface of the stress penetration area increases,while the diameter and wall thickness of CS/SS bimetallic shaft decrease,and hence,thickness-to-diameter ratio remains unchanged,which is conducive to the coordinated deformation of inner and outer metals and the interface of welded joints.The microstructure analysis of the interface shows that there are no obvious defects and cracks in the attachment,and that the microstructure on CS side is dominated by ferrite and martensite phases.Caused by the decarburization effect,Q235 steel microstructure features coarse ferrite,accompanied by a carburized layer with a thickness of about 20μm on SS side near the interface where grains are refined.As radial compression ratio increases,the diffusion distance of Cr,Ni,and other elements increases,the average thickness of the decarburized layer decreases,the interfacial bonding strength increases from 450 to 490 MPa,and metallurgical bonding at the interface is thus improved.The study demonstrates that it is feasible to use 304 SS and Q235 CS for cross wedge rolling composite shafts.
基金supported by the National Numerical Windtunnel Project, China
文摘The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and saving the structured grid are proposed.In the present method,the geometric coordinates of the six logical domains of one grid block is saved instead of all grid vertex coordinates to reduce the size of the structured grid file when the grid is compressed.And all grid vertex coordinates are recovered from the compressed data with the use of the transfinite interpolation algorithm when the grid is decompressed.Firstly,single-block grid cases with different edge vertexes are tested to investigate the compression effect.The test results show that a higher compression ratio will be obtained on a larger grid.Secondly,further theoretical analysis is carried out to investigate the effects of parameters on grid compression.The analysis on single-block grid compression shows that the compression ratio is proportionate to the cubic root of the number of total vertexes.The highest compression ratio of single-block grid is obtained when the numbers of vertexes in three logical directions are equal.The analysis on multi-block grid compression shows that a higher compression ratio will be obtained when a larger difference of total vertexes number exists among the grid blocks.Finally,multi-blockgrids of two industrial aircraft configurations are compressed to validate the method.The compression results demonstrate that the present method has an excellent ability on structured grid compression.For a million-vertex structured grid,more than 80 percent disk space can be saved after compression.
基金Project(11174235)supported by the National Natural Science Foundation of ChinaProject(3102014JC02010301)supported by the Fundamental Research Funds for the Central Universities,China
文摘The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.
文摘It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS) and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.
文摘GMT-sheet is used in automobile bumper with high rigidity and strength, and its joining strength is influenced by lap length, one of the joined molding conditions. Fracture strength was calculated by dividing fracture load with cross-sectional area. Total five repeated measurements were made to obtain the average value. Tensile test was conducted at room temperature for 10 specimens. In addition, the effect of compression ratio on creep and tensile performance during lap joined molding was discussed. With increasing lap length, the lap joining efficiency of GMT-sheet was increased. However, higher compression ratio reduced the joining efficiency. Creep test on GMT-sheet showed abrupt fracture without tertiary creep. This can be explained by the weak thermal resistance of the resin. If GMT-sheet was exposed to high temperature for a long time, it was easily failed by external force.
基金supported by the National Key Research and Development Project(No.2018YFB1307902)the National Natural Science Foundation of China(No.52175353,51905366 and 52275382)+5 种基金Shanxi young top tal-ent project,Shanxi Province Science Foundation for Youths(No.201901D211312)Excellent young academic leaders in Shanxi colleges and universities(No.2019045)Excellent Achievements Cultivation Project of Shanxi Higher Education Institutions(No.2019KJ028)Key Research and Development Projects of Shanxi Province(No.201903D121043)Key Research and Development Plan of Shanxi Province(No.202102150401002)Innovative projects in graduate education(NO.XCX211001).
文摘At present,there are few studies on the phase transition during the thermocompression plastic deformation of magnesium alloy.In this study,the evolution model of thermal compression plastic of AZ31 magnesium alloy was constructed by molecular dynamics,and the phase transition relationship between HCP and FCC at different thermal compression rates was studied.By combining GLEEBLE thermal compression experiment with transmission electron microscopy experiment,high-resolution transmission electron microscopy images were taken to analyze the transition rules between HCP and FCC during plastic deformation at different thermal compression rates,and the accuracy of molecular dynamics analysis was verified.It is found that the slip of Shockley’s incomplete dislocation produces obvious HCP→FCC phase transition at low strain rate and base plane dislocation at high strain rate,which makes the amorphous phase transition of HCP→OTHER more obvious,which provides theoretical guidance for the formulation of forming mechanism and preparation process of magnesium alloy.
基金the National Natural Science Foundation of China under Grants 61873160 and 61672338.
文摘Nowadays,distance is usually used to evaluate the error of trajectory compression.These methods can effectively indicate the level of geometric similarity between the compressed and the raw trajectory,but it ignores the velocity error in the compression.To fill the gap of these methods,assuming the velocity changes linearly,a mathematical model called SVE(Time Synchronized Velocity Error)for evaluating compression error is designed,which can evaluate the velocity error effectively,conveniently and accurately.Based on this model,an innovative algorithm called SW-MSVE(Minimum Time Synchronized Velocity Error Based on Sliding Window)is proposed,which can minimize the velocity error in trajectory compression under the premise of local optimization.Two elaborate experiments are designed to demonstrate the advancements of the SVE and the SW-MSVE respectively.In the first experiment,we use the PED,the SED and the SVE to evaluate the error under four compression algorithms,one of which is the SW-MSVE algorithm.The results show that the SVE is less influenced by noise with stronger performance and more applicability.In the second experiment,by marking the raw trajectory,we compare the SW-MSVE algorithm with three others algorithms at information retention.The results show that the SW-MSVE algorithm can take into account both velocity and geometric structure constraints and retains more information of the raw trajectory at the same compression ratio.
基金supported by the National Natural Science Foundation of China under Grant No.60703087the Project of Science and Technology Department of Zhejiang Province under Grant No.2010C31006 and No.2011C21081
文摘In the field of economy,there are more and more electronic scanning cash images,which need to be compressed in a higher compression ratio.This paper proposes a specific compression algorithm for cash images.First,according to cash image characteristics and standard JPEG(joint photographic experts group)compression,image re-ordering techniques are analyzed,and the method of modifying some blocks into single color blocks is adopted.Then,a suitable quantization table for cash images is obtained.Experimental results show that the method is effective.
文摘This paper introduced an efficient compression technique that uses the compressive sensing(CS)method to obtain and recover sparse electrocardiography(ECG)signals.The recovery of the signal can be achieved by using sampling rates lower than the Nyquist frequency.A novel analysis was proposed in this paper.To apply CS on ECG signal,the first step is to generate a sparse signal,which can be obtained using Modified Discrete Cosine Transform(MDCT)on the given ECGsignal.This transformation is a promising key for other transformations used in this search domain and can be considered as the main contribution of this paper.A small number of wavelet components can describe the ECG signal as related work to obtain a sparse ECGsignal.Asensing technique for ECGsignal compression,which is a novel area of research,is proposed.ECG signals are introduced randomly between any successive beats of the heart.MIT-BIH database can be represented as the experimental database in this domain of research.TheMIT-BIH database consists of various ECG signals involving a patient and standard ECG signals.MATLAB can be considered as the simulation tool used in this work.The proposed method’s uniqueness was inspired by the compression ratio(CR)and achieved by MDCT.The performance measurement of the recovered signal was done by calculating the percentage root mean difference(PRD),mean square error(MSE),and peak signal to noise ratio(PSNR)besides the calculation of CR.Finally,the simulation results indicated that this work is one of the most important works in ECG signal compression.
基金supported by the National Basic Research Program of China(No.2012CB315701)the National Natural Science Foundation of China(No.61205109)
文摘A novel two-stage spectral compression structure which employs a logarithmic dispersion increasing fiber (DIF) in- terconnected with a highly nonlinear linear fiber-nonlinear optical loop mirror (HNLF-NOLM) is proposed and dem- onstrated by numerical simulation. The numerical simulation is implemented by solving the generalized nonlinear SchrOdinger equation using split-step Fourier method, where the soliton number is in the range of 0.5≤N≤1.4. The re- suits show that the spectra are well-compressed and low-pedestal, and the maximum spectral compression ratio (SCR) can reach 10.93 when N=l.4.