Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is propos...Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..展开更多
Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process o...Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process of image compression are modified by keys in order to achieve image joint compression encryption. Combined with the bit-plane coding technique, the discrete wavelet transform coefficients in different resolutions can be encrypted respectively with different keys, so that the resolution selective encryption is realized to meet different application needs. Zero-tree coding is improved, and adaptive arithmetic coding is introduced. Then, the proposed joint compression-encryption algorithm is simulated. The simulation results show that as long as the parameters are selected appropriately, the compression efficiency of proposed image joint compression-encryption algorithm is basically identical to that of the original image compression algorithm, and the security of the proposed algorithm is better than the joint encryption algorithm based on interval splitting.展开更多
There are a few issues related to the existing symmetric encryption models for color image data,such as the key generation and distribution problems.In this paper,we propose a compression-encryption model to solve the...There are a few issues related to the existing symmetric encryption models for color image data,such as the key generation and distribution problems.In this paper,we propose a compression-encryption model to solve these problems.This model consists of three processes.The first process is the dynamic symmetric key generation.The second one is the compression process,which is followed by encryption using keystreams and S-Boxes that are generated using a chaotic logistic map.The last process is the symmetric key distribution.The symmetric key is encrypted twice using Rivest-Shamir-Adleman(RSA)to provide both authentication and confidentiality.Then,it is inserted into the cipher image using the End of File(EoF)method.The evaluation shows that the symmetric key generator model can produce a random and dynamic symmetric key.Hence,the image data is safe from ciphertext-only attacks.This model is fast and able to withstand entropy attacks,statistical attacks,differential attacks,and brute-force attacks.展开更多
文摘Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..
基金supported by the Natural Science Foundation of Hainan Province, China (Grant No. 613155)
文摘Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process of image compression are modified by keys in order to achieve image joint compression encryption. Combined with the bit-plane coding technique, the discrete wavelet transform coefficients in different resolutions can be encrypted respectively with different keys, so that the resolution selective encryption is realized to meet different application needs. Zero-tree coding is improved, and adaptive arithmetic coding is introduced. Then, the proposed joint compression-encryption algorithm is simulated. The simulation results show that as long as the parameters are selected appropriately, the compression efficiency of proposed image joint compression-encryption algorithm is basically identical to that of the original image compression algorithm, and the security of the proposed algorithm is better than the joint encryption algorithm based on interval splitting.
文摘There are a few issues related to the existing symmetric encryption models for color image data,such as the key generation and distribution problems.In this paper,we propose a compression-encryption model to solve these problems.This model consists of three processes.The first process is the dynamic symmetric key generation.The second one is the compression process,which is followed by encryption using keystreams and S-Boxes that are generated using a chaotic logistic map.The last process is the symmetric key distribution.The symmetric key is encrypted twice using Rivest-Shamir-Adleman(RSA)to provide both authentication and confidentiality.Then,it is inserted into the cipher image using the End of File(EoF)method.The evaluation shows that the symmetric key generator model can produce a random and dynamic symmetric key.Hence,the image data is safe from ciphertext-only attacks.This model is fast and able to withstand entropy attacks,statistical attacks,differential attacks,and brute-force attacks.