Plastometric experiments,supplemented with numerical simulations using the finite element method(FEM),can be advantageously used to characterize the deformation behavior of metallic materials.The accuracy of such simu...Plastometric experiments,supplemented with numerical simulations using the finite element method(FEM),can be advantageously used to characterize the deformation behavior of metallic materials.The accuracy of such simulations predicting deformation behaviors of materials is,however,primarily affected by the applied rheology law.The presented study focuses on the characterization of the deformation behavior of AISI 1045 type carbon steel,widely used e.g.,in automotive and power engineering,under extreme conditions(i.e.,high temperatures,strain rates).The study consists of two main parts:experimentally analyzing the flow stress development of the steel under different thermomechanical conditions via uniaxial hot compression tests and establishing the rheology law via numerical simulations implementing the experimentally acquired flow stress curves.The numerical simulations then not only serve to establish the rheology law but also to verify the reliability of the selected experimental process.The results of the numerical simulations showed that the established rheology law characterizes the behavior of the investigated steel with sufficient accuracy also at high temperatures and/or strain rates,and can,therefore,be used for practical purposes.Last but not least,supplementary microstructure analyses performed for the samples subjected to the highest deformation temperature provided a deeper insight into the effects of the applied(extreme)thermomechanical conditions on the behavior of the investigated steel.展开更多
The study of rock failure mechanisms is fundamental to geotechnical engineering,as it enhances design quality and mitigates disaster risks.This research employed in situ compression tests on 3D-printed rocklike sample...The study of rock failure mechanisms is fundamental to geotechnical engineering,as it enhances design quality and mitigates disaster risks.This research employed in situ compression tests on 3D-printed rocklike samples with a single flaw,combining Micro-CT scans and a specialized loading device to analyze their behavior.Mechanical properties and failure modes of these printed samples were compared to those of natural flawed sandstones,demonstrating the capability of 3D printing to replicate natural rock characteristics.By reconstructing 3D crack evolution from 2D CT images and applying digital volume correlation(DVC),the study visualized internal strain fields and established a relationship between strain patterns and rock failure.The results reveal that crack initiation consistently occurs at the flaw,advancing into tensile and secondary shear or mixed cracks.For flaw angles(α)ranging from 0°to 45°,the 3D-printed samples exhibited a higher number of newly formed cracks and a faster increase in crack volume with strain.In contrast,for flaw angles of 45°≤α≤90°,the opposite trend was observed.The internal strain field exhibited significant strain localization,with this uneven distribution playing a critical role in sample failure.When the flaw angle was in the range of 0°≤α≤30°,failure was primarily driven by tensile cracks,forming distinct tensile bands.Conversely,for 30°<α≤90°,a combination of tensile and shear cracks dominated the failure,producing both shear and tensile bands in the sample.Additionally,the strain field component ε_(yy) showed a strong correlation with the evolution of internal damage,providing valuable insights into the underlying rock failure mechanisms.展开更多
The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The consti...The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The constitutive relations between flow stress and effective strain,effective strain rate as well as deformation temperature were studied.It can be concluded that the flow stress significantly reduces with the deformation temperature of IN690 superalloy increasing.Whereas,there is a significant increase of flow stress when the strain rate increases from 0.1 s^-1 to 10 s^-1.Based on the hyperbolic-sine Arrhenius-type equation,a constitutive equation considering compensation of strain was developed.The activation energy and the material constants(Q,n and ln A) decrease as the deformation strain increases.The strain dependent term is successfully incorporated in the constitutive equation through a quartic equation.A good agreement between the experimental data and the predicted results has been achieved,indicating that the proposed constitutive equation and the methods of determing the material constants are suitable to model the high temperature deformation behavior of IN690 superalloy.展开更多
The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures hav...The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials.展开更多
This paper models hot compression testing using a dilatometer in loading mode.These small-scale tests provide a high throughput at low cost,but are susceptible to inhomogeneity due to friction and temperature gradient...This paper models hot compression testing using a dilatometer in loading mode.These small-scale tests provide a high throughput at low cost,but are susceptible to inhomogeneity due to friction and temperature gradients.A novel method is presented for correcting the true stress-strain constitutive response over the full range of temperatures,strain-rates and strain.The nominal response from the tests is used to predict the offset in the stress-strain curves due to inhomogeneity,and this stress offsetΔσis applied piecewise to the data,correcting the constitutive response in one iteration.A key new feature is the smoothing and fitting of the flow stress data as a function of temperature and strain-rate,at multiple discrete strains.The corrected model then provides quantitative prediction of the spatial and temporal variation in strain-rate and strain throughout the sample,needed to correlate the local deformation conditions with the microstructure and texture evolution.The study uses a detailed series of 144 hot compression tests of a Zr-Nb alloy.While this is an important wrought nuclear alloy in its own right,it also serves here as a test case for modelling the dilatometer for hot testing of high temperature alloys,particularly those with dualα-βphase microstructures(such as titanium alloys).展开更多
Lubrication and friction conditions vary with deformation during metal forming processes.Significant macro-variations can be observed when a threshold of deformation is reached.This study shows that during the cold co...Lubrication and friction conditions vary with deformation during metal forming processes.Significant macro-variations can be observed when a threshold of deformation is reached.This study shows that during the cold compression processing of#45(AISI 1045)steel rings,the magnitude of friction and surface roughness(Ra)changes significantly upon reaching a 45%reduction in ring height.For example,the Ra of compressed ring specimens increased by approximately 55%immediately before and after reaching this threshold,compared to an 18% or 25%variation over a 35%-45%or a 45%-55%reduction in height,respectively.The ring compression test conducted by this study indicates that the Coulomb friction coefficient and Tresca friction factor mare 0.105 and 0.22,respectively,when the reduction in height is less than 45%;and 0.11 and 0.24,respectively,when the reduction in height is greater than 45%.展开更多
Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre...Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.展开更多
The strength properties of green sinter beds,including the Young’s modulus and maximum bed strain,were evaluated using uniaxial compression tests.The green-sinter-bed samples were scanned using X-ray computed tomogra...The strength properties of green sinter beds,including the Young’s modulus and maximum bed strain,were evaluated using uniaxial compression tests.The green-sinter-bed samples were scanned using X-ray computed tomography(XCT),and the geometry characteristics of the granules were quantified by XCT image analysis.The orthogonal array method was applied to determine the concomitant effects of the moisture,hydrated lime,and concentrate contents on the bed strength characteristics.Less bed strain was observed when the granules had a thin adhering layer and increased interlock contacts,which had a great capacity to resist the applied load collectively.The optimal combination for decreasing the bed maximum strain was 5.8%moisture,2%hydrated lime,and 0%concentrate.The moisture and concentrate contents were the most significant factors determining the green bed strength.Increasing the moisture and concentrate contents produced granules with a thicker and more deformable adhering layer,resulting in a more compact bed.The addition of hydrated lime inhibited rearrangement,deformation,and fracture of the granules in green sinter bed during compression.展开更多
In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of ...In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics ...The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics of frozen sodium sulfate saline sandy soil,a series of uniaxial compression tests were performed by integrating digital image correlation(DIC)technology into the testing apparatus.The evolution law of the uniaxial compression strength(UCS),the failure strain,and the formation of the shear band of the frozen sodium sulfate saline sandy soil were analyzed.The test results show that within the scope of this study,with the increase of salt content,both the UCS and the shear band angle initially decrease with increasing salt content before showing an increase.In contrast,the failure strain and the width of the shear band exhibit an initial increase followed by a decrease in the samples.In addition,to investigate the brittle failure characteristics of frozen sodium sulfate saline sandy soil,two classic brittleness evaluation methods were employed to quantitatively assess the brittleness level for the soil samples.The findings suggest that the failure characteristics under all test conditions in this study belong to the transition stage between brittle and ductile,indicating that frozen sodium sulfate saline sandy soil exhibits certain brittle behavior under uniaxial compression conditions,and the brittleness index basically decreases and then increases with the rise in salt content.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
Rock-like specimens containing a joint with different inclination angles and roughness were prepared using 3D printing technology.Then,true triaxial compression loading experiments were conducted on those jointed spec...Rock-like specimens containing a joint with different inclination angles and roughness were prepared using 3D printing technology.Then,true triaxial compression loading experiments were conducted on those jointed specimens.The increase in roughness leads to an increase in the axial strength and peak strain.With the increasing inclination angle,the axial strength initially decreases from 30°to 60°and then increases from 60°to 90°.While the peak strain first rises from 30°to 45°and then declines from 45°to 90°.The variation in failure mode results from differences in lateral stress on the joints under different strike directions.Specimens with joint strike parallel to the intermediate principal stress predominantly showed matrix or matrix-joint mixed shear failure,whereas those parallel to the minimum principal stress exhibited matrix shear failure.The analysis results of acoustic emission signals indicate the crack number and shear crack percentage increase with the increasing roughness and first decrease(30°to 60°),then increase(60°to 90°)with the increasing inclination angle.The research results can provide some guidance for the design and support of underground engineering with jointed surrounding rock.展开更多
This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performe...This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.展开更多
System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to opti...System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to optimize the test data volume, decrease the testing time, and conquer the ATE memory limitation for SOC designs. This paper presents a new compression method of testing for intellectual property core-based system-on-chip. The proposed method is based on new split- data variable length (SDV) codes that are designed using the split-options along with identification bits in a string of test data. This paper analyses the reduction of test data volume, testing time, run time, size of memory required in ATE and improvement of compression ratio. Experimental results for ISCAS 85 and ISCAS 89 Benchmark circuits show that SDV codes outperform other compression methods with the best compression ratio for test data compression. The decompression architecture for SDV codes is also presented for decoding the implementations of compressed bits. The proposed scheme shows that SDV codes are accessible to any of the variations in the input test data stream.展开更多
The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic ...The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder.展开更多
The backfill should keep stable in the primary stope when mining an adjacent secondary stope in subsequent open stoping mining methods,and the large-size mined-out area is usually backfilled by multiple backfilling be...The backfill should keep stable in the primary stope when mining an adjacent secondary stope in subsequent open stoping mining methods,and the large-size mined-out area is usually backfilled by multiple backfilling before the recovery of a secondary stope,resulting in a layered structure of backfill in stope.Therefore,it is significant to investigate the deformation responses and mechanical properties of stratified cemented tailings backfill(SCTB)with different layer structures to remain self-standing as an artificial pillar in the primary stope.The current work examined the effects of enhance layer position(1/3,1/2,and 2/3)and thickness ratio(0,0.1,0.2,and 0.3)on the mechanical properties,deformation,energy evolution,microstructures,and failure modes of SCTB.The results demonstrate that the incorporation of an enhance layer significantly strengthens the deformation and strength of SCTB.Under a confining pressure of 50 kPa,the peak deviatoric stress rises from 525.6 to 560.3,597.1,and 790.5 kPa as the thickness ratio of enhance layer is increased from 0 to 0.1,0.2,and 0.3,representing a significant increase of 6.6%,13.6%,and 50.4%.As the confining pressure increases,the slopes of the curves in the elastic stage become steep,and the plastic phase is extended accordingly.Additionally,the incorporation of the enhance layer significantly improves the energy storage linit of SCTB specimen.As the thickness ratio of the enhance layer increases from 0 to 0.1,0.2,and 0.3,the elastic energy rises from 0.54 to 0.67,0.84,and 1.00 MJ·m^(-3),representing a significant increase of 24.1%,55.6%,and 85.2%.The internal friction angles and cohesions of the SCTB specimens are higher than those of the CTB specimens,however,the cohesion is more susceptible to enhance layer position and thickness ratio than the internal friction angle.The failure style of the SCTB specimen changes from shear failure to splitting bulging failure and shear bulging failure with the presence of an enhance layer.The crack propagation path is significantly blocked by the enhance layer.The findings are of great significance to the application and stability of the SCTB in subsequent stoping backfilling mines.展开更多
In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simul...In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simulated results were compared with those of the experiment. The numerical simulation results, such as fracture propagation, microcrack distribution, stress-strain response, and damage patterns, were discussed in detail. The simulated results under various confining pressures (0-60 MPa) are in good agreement with the experimental results. The simulated results reveal that rock failure is caused by axial splitting under uniaxial compression. As the confining pressure increases, rock failure occurs in a few localized shear planes and the rock mechanical behavior is changed from brittle to ductile. Consequently, the peak failure strength, microcrack numbers, and the shear plane angle increase, but the ratio of tensile to shear microcracks decreases. The damage formation during the compression simulations indicates that the particle simulation method can produce similar behaviors as those observed through laboratory compression tests.展开更多
The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the...The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the deformation and stability of the dam.Based on the characteristics of loose organizational structure,high moisture content and poor mechanical properties,the triaxial compression tests and creep tests were carried out,respectively.The results show significant non-linear,low strength and no obvious strength peaks.Both axial and lateral strains are achieved more than 3%when the tests are failed.The weak sandstone has a significant creep property,but only transient and steady state appear under low stress.Increased stress causes creep intensified and lateral strain gradually exceeds axial strain.In the failure stage,it has characteristics of large axial plastic deformation,obvious volumetric ductility dilation and large steady creep rate.The accelerated creep appears shortly after transient loading under confining of pressures 1.0 MPa and 1.5 MPa.Therefore,an improved Burgers creep model considering the non-linear characteristics of weak sandstone is built based on hyperbolic equation and the creep parameters are identified.This model can well describe the creep properties of weak sandstone.展开更多
We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial c...We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial compression. Complete axial stress-strain curves were classified into four types, i.e., single peak, softening after multi-peak yield platform, hardening after multi-peak yield platform and multi-peak dur- ing softening. Observation of crack evolution on the specimen surface reveals that the deformation behavior is correlated to the closure of pre-existing joint, development of fractures in rock matrix and teeth shearing of the shear plane. To investigate the brittleness of the specimens, the ratio of the residual strength to the maximum peak strength as well as the first and last peak strains were studied. At the same joint inclination angle, the ratios between residual strength and the maximum peak strength and the last peak strains increased while the first peak strain decreased with the increase of joint continuity factor. At the same joint continuity factor, the curves of the three brittleness parameters vs. joint inclina- tion angle can either be concave or convex single-oeak or wave-shaoed.展开更多
文摘Plastometric experiments,supplemented with numerical simulations using the finite element method(FEM),can be advantageously used to characterize the deformation behavior of metallic materials.The accuracy of such simulations predicting deformation behaviors of materials is,however,primarily affected by the applied rheology law.The presented study focuses on the characterization of the deformation behavior of AISI 1045 type carbon steel,widely used e.g.,in automotive and power engineering,under extreme conditions(i.e.,high temperatures,strain rates).The study consists of two main parts:experimentally analyzing the flow stress development of the steel under different thermomechanical conditions via uniaxial hot compression tests and establishing the rheology law via numerical simulations implementing the experimentally acquired flow stress curves.The numerical simulations then not only serve to establish the rheology law but also to verify the reliability of the selected experimental process.The results of the numerical simulations showed that the established rheology law characterizes the behavior of the investigated steel with sufficient accuracy also at high temperatures and/or strain rates,and can,therefore,be used for practical purposes.Last but not least,supplementary microstructure analyses performed for the samples subjected to the highest deformation temperature provided a deeper insight into the effects of the applied(extreme)thermomechanical conditions on the behavior of the investigated steel.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea Government(MOTIE)(Grant No.20214000000500,Training program of CCUS for the green growth)by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(Grant No.2022R1F1A1076409)the support from the Chinese Scholarship Council for awarding a scholarship(CSC No.202106820011).
文摘The study of rock failure mechanisms is fundamental to geotechnical engineering,as it enhances design quality and mitigates disaster risks.This research employed in situ compression tests on 3D-printed rocklike samples with a single flaw,combining Micro-CT scans and a specialized loading device to analyze their behavior.Mechanical properties and failure modes of these printed samples were compared to those of natural flawed sandstones,demonstrating the capability of 3D printing to replicate natural rock characteristics.By reconstructing 3D crack evolution from 2D CT images and applying digital volume correlation(DVC),the study visualized internal strain fields and established a relationship between strain patterns and rock failure.The results reveal that crack initiation consistently occurs at the flaw,advancing into tensile and secondary shear or mixed cracks.For flaw angles(α)ranging from 0°to 45°,the 3D-printed samples exhibited a higher number of newly formed cracks and a faster increase in crack volume with strain.In contrast,for flaw angles of 45°≤α≤90°,the opposite trend was observed.The internal strain field exhibited significant strain localization,with this uneven distribution playing a critical role in sample failure.When the flaw angle was in the range of 0°≤α≤30°,failure was primarily driven by tensile cracks,forming distinct tensile bands.Conversely,for 30°<α≤90°,a combination of tensile and shear cracks dominated the failure,producing both shear and tensile bands in the sample.Additionally,the strain field component ε_(yy) showed a strong correlation with the evolution of internal damage,providing valuable insights into the underlying rock failure mechanisms.
基金support of the National Natural Science Foundation of China under Contract Number 50831008
文摘The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The constitutive relations between flow stress and effective strain,effective strain rate as well as deformation temperature were studied.It can be concluded that the flow stress significantly reduces with the deformation temperature of IN690 superalloy increasing.Whereas,there is a significant increase of flow stress when the strain rate increases from 0.1 s^-1 to 10 s^-1.Based on the hyperbolic-sine Arrhenius-type equation,a constitutive equation considering compensation of strain was developed.The activation energy and the material constants(Q,n and ln A) decrease as the deformation strain increases.The strain dependent term is successfully incorporated in the constitutive equation through a quartic equation.A good agreement between the experimental data and the predicted results has been achieved,indicating that the proposed constitutive equation and the methods of determing the material constants are suitable to model the high temperature deformation behavior of IN690 superalloy.
文摘The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials.
基金Light Form,a UK Engineering and Physical Sciences Research Council(EPSRC)programme grant(EP/R001715/1)。
文摘This paper models hot compression testing using a dilatometer in loading mode.These small-scale tests provide a high throughput at low cost,but are susceptible to inhomogeneity due to friction and temperature gradients.A novel method is presented for correcting the true stress-strain constitutive response over the full range of temperatures,strain-rates and strain.The nominal response from the tests is used to predict the offset in the stress-strain curves due to inhomogeneity,and this stress offsetΔσis applied piecewise to the data,correcting the constitutive response in one iteration.A key new feature is the smoothing and fitting of the flow stress data as a function of temperature and strain-rate,at multiple discrete strains.The corrected model then provides quantitative prediction of the spatial and temporal variation in strain-rate and strain throughout the sample,needed to correlate the local deformation conditions with the microstructure and texture evolution.The study uses a detailed series of 144 hot compression tests of a Zr-Nb alloy.While this is an important wrought nuclear alloy in its own right,it also serves here as a test case for modelling the dilatometer for hot testing of high temperature alloys,particularly those with dualα-βphase microstructures(such as titanium alloys).
基金National Natural Science Foundation of China(Grant Nos.51675415 and 51335009)the Open Research Fund of the Key Laboratory of High-Performance Complex Manufacturing,Central South University(Kfkt2016-06).
文摘Lubrication and friction conditions vary with deformation during metal forming processes.Significant macro-variations can be observed when a threshold of deformation is reached.This study shows that during the cold compression processing of#45(AISI 1045)steel rings,the magnitude of friction and surface roughness(Ra)changes significantly upon reaching a 45%reduction in ring height.For example,the Ra of compressed ring specimens increased by approximately 55%immediately before and after reaching this threshold,compared to an 18% or 25%variation over a 35%-45%or a 45%-55%reduction in height,respectively.The ring compression test conducted by this study indicates that the Coulomb friction coefficient and Tresca friction factor mare 0.105 and 0.22,respectively,when the reduction in height is less than 45%;and 0.11 and 0.24,respectively,when the reduction in height is greater than 45%.
基金Supported by the National Natural Science Foundation of China(61076019,61106018)the Aeronautical Science Foundation of China(20115552031)+3 种基金the China Postdoctoral Science Foundation(20100481134)the Jiangsu Province Key Technology R&D Program(BE2010003)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010115)the Nanjing University of Aeronatics and Astronautics Initial Funding for Talented Faculty(1004-YAH10027)~~
文摘Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.
基金This work was financially supported by the China Postdoctoral Science Foundation(grant No.2018M640557)the National Natural Science Foundation of China(grant No.51906212)the National Natural Science Foundation of China(grant No.52036008).
文摘The strength properties of green sinter beds,including the Young’s modulus and maximum bed strain,were evaluated using uniaxial compression tests.The green-sinter-bed samples were scanned using X-ray computed tomography(XCT),and the geometry characteristics of the granules were quantified by XCT image analysis.The orthogonal array method was applied to determine the concomitant effects of the moisture,hydrated lime,and concentrate contents on the bed strength characteristics.Less bed strain was observed when the granules had a thin adhering layer and increased interlock contacts,which had a great capacity to resist the applied load collectively.The optimal combination for decreasing the bed maximum strain was 5.8%moisture,2%hydrated lime,and 0%concentrate.The moisture and concentrate contents were the most significant factors determining the green bed strength.Increasing the moisture and concentrate contents produced granules with a thicker and more deformable adhering layer,resulting in a more compact bed.The addition of hydrated lime inhibited rearrangement,deformation,and fracture of the granules in green sinter bed during compression.
文摘In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
基金supported by the National Natural Science Foundation of China(Grant Nos.42372312,and 42172299)the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(Grant No.JDYC20220807).
文摘The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics of frozen sodium sulfate saline sandy soil,a series of uniaxial compression tests were performed by integrating digital image correlation(DIC)technology into the testing apparatus.The evolution law of the uniaxial compression strength(UCS),the failure strain,and the formation of the shear band of the frozen sodium sulfate saline sandy soil were analyzed.The test results show that within the scope of this study,with the increase of salt content,both the UCS and the shear band angle initially decrease with increasing salt content before showing an increase.In contrast,the failure strain and the width of the shear band exhibit an initial increase followed by a decrease in the samples.In addition,to investigate the brittle failure characteristics of frozen sodium sulfate saline sandy soil,two classic brittleness evaluation methods were employed to quantitatively assess the brittleness level for the soil samples.The findings suggest that the failure characteristics under all test conditions in this study belong to the transition stage between brittle and ductile,indicating that frozen sodium sulfate saline sandy soil exhibits certain brittle behavior under uniaxial compression conditions,and the brittleness index basically decreases and then increases with the rise in salt content.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金Projects(52074259,52204132)supported by the National Natural Science Foundation of ChinaProject(104023002)supported by the Yunlong Lake Laboratory of Deep Underground Science and Engineering Project,China+2 种基金Project(BK20220157)supported by Natural Science Foundation of Jiangsu Province of ChinaProject(2023JJ40285)supported by Hunan Provincial Natural Science Foundation of ChinaProject(22B0469)supported by Scientific Research Foundation of Hunan Provincial Education Department,China。
文摘Rock-like specimens containing a joint with different inclination angles and roughness were prepared using 3D printing technology.Then,true triaxial compression loading experiments were conducted on those jointed specimens.The increase in roughness leads to an increase in the axial strength and peak strain.With the increasing inclination angle,the axial strength initially decreases from 30°to 60°and then increases from 60°to 90°.While the peak strain first rises from 30°to 45°and then declines from 45°to 90°.The variation in failure mode results from differences in lateral stress on the joints under different strike directions.Specimens with joint strike parallel to the intermediate principal stress predominantly showed matrix or matrix-joint mixed shear failure,whereas those parallel to the minimum principal stress exhibited matrix shear failure.The analysis results of acoustic emission signals indicate the crack number and shear crack percentage increase with the increasing roughness and first decrease(30°to 60°),then increase(60°to 90°)with the increasing inclination angle.The research results can provide some guidance for the design and support of underground engineering with jointed surrounding rock.
基金support from the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grant(Grant No.5808)received in 2019 for his research programsThe third author appreciates the funding from the National Natural Science Foundation of China(Grant No.52378365)Hubei Key Research&Development Program(Grant No.2023BCB112).
文摘This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.
文摘System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to optimize the test data volume, decrease the testing time, and conquer the ATE memory limitation for SOC designs. This paper presents a new compression method of testing for intellectual property core-based system-on-chip. The proposed method is based on new split- data variable length (SDV) codes that are designed using the split-options along with identification bits in a string of test data. This paper analyses the reduction of test data volume, testing time, run time, size of memory required in ATE and improvement of compression ratio. Experimental results for ISCAS 85 and ISCAS 89 Benchmark circuits show that SDV codes outperform other compression methods with the best compression ratio for test data compression. The decompression architecture for SDV codes is also presented for decoding the implementations of compressed bits. The proposed scheme shows that SDV codes are accessible to any of the variations in the input test data stream.
基金supported by the Shenzhen Government R&D Project under Grant No.JC200903160361A
文摘The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder.
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2023JCCXNY01)Guangxi Key Technologies R&D Program,China(No.2022AB31022).
文摘The backfill should keep stable in the primary stope when mining an adjacent secondary stope in subsequent open stoping mining methods,and the large-size mined-out area is usually backfilled by multiple backfilling before the recovery of a secondary stope,resulting in a layered structure of backfill in stope.Therefore,it is significant to investigate the deformation responses and mechanical properties of stratified cemented tailings backfill(SCTB)with different layer structures to remain self-standing as an artificial pillar in the primary stope.The current work examined the effects of enhance layer position(1/3,1/2,and 2/3)and thickness ratio(0,0.1,0.2,and 0.3)on the mechanical properties,deformation,energy evolution,microstructures,and failure modes of SCTB.The results demonstrate that the incorporation of an enhance layer significantly strengthens the deformation and strength of SCTB.Under a confining pressure of 50 kPa,the peak deviatoric stress rises from 525.6 to 560.3,597.1,and 790.5 kPa as the thickness ratio of enhance layer is increased from 0 to 0.1,0.2,and 0.3,representing a significant increase of 6.6%,13.6%,and 50.4%.As the confining pressure increases,the slopes of the curves in the elastic stage become steep,and the plastic phase is extended accordingly.Additionally,the incorporation of the enhance layer significantly improves the energy storage linit of SCTB specimen.As the thickness ratio of the enhance layer increases from 0 to 0.1,0.2,and 0.3,the elastic energy rises from 0.54 to 0.67,0.84,and 1.00 MJ·m^(-3),representing a significant increase of 24.1%,55.6%,and 85.2%.The internal friction angles and cohesions of the SCTB specimens are higher than those of the CTB specimens,however,the cohesion is more susceptible to enhance layer position and thickness ratio than the internal friction angle.The failure style of the SCTB specimen changes from shear failure to splitting bulging failure and shear bulging failure with the presence of an enhance layer.The crack propagation path is significantly blocked by the enhance layer.The findings are of great significance to the application and stability of the SCTB in subsequent stoping backfilling mines.
基金supported by the Graduate Degree Thesis Innovation Foundation of Central South University (No.2009ssxt226)
文摘In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simulated results were compared with those of the experiment. The numerical simulation results, such as fracture propagation, microcrack distribution, stress-strain response, and damage patterns, were discussed in detail. The simulated results under various confining pressures (0-60 MPa) are in good agreement with the experimental results. The simulated results reveal that rock failure is caused by axial splitting under uniaxial compression. As the confining pressure increases, rock failure occurs in a few localized shear planes and the rock mechanical behavior is changed from brittle to ductile. Consequently, the peak failure strength, microcrack numbers, and the shear plane angle increase, but the ratio of tensile to shear microcracks decreases. The damage formation during the compression simulations indicates that the particle simulation method can produce similar behaviors as those observed through laboratory compression tests.
基金Project(2011CB013504)supported by the National Basic Research Program of ChinaProject(11172090)supported by the National Natural Science Foundation of China
文摘The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the deformation and stability of the dam.Based on the characteristics of loose organizational structure,high moisture content and poor mechanical properties,the triaxial compression tests and creep tests were carried out,respectively.The results show significant non-linear,low strength and no obvious strength peaks.Both axial and lateral strains are achieved more than 3%when the tests are failed.The weak sandstone has a significant creep property,but only transient and steady state appear under low stress.Increased stress causes creep intensified and lateral strain gradually exceeds axial strain.In the failure stage,it has characteristics of large axial plastic deformation,obvious volumetric ductility dilation and large steady creep rate.The accelerated creep appears shortly after transient loading under confining of pressures 1.0 MPa and 1.5 MPa.Therefore,an improved Burgers creep model considering the non-linear characteristics of weak sandstone is built based on hyperbolic equation and the creep parameters are identified.This model can well describe the creep properties of weak sandstone.
基金supported by the National Natural Science Foundation of China (No. 11102224)the Fundamental Research Funds for the Central Universities of China(No. 2009QL05)
文摘We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial compression. Complete axial stress-strain curves were classified into four types, i.e., single peak, softening after multi-peak yield platform, hardening after multi-peak yield platform and multi-peak dur- ing softening. Observation of crack evolution on the specimen surface reveals that the deformation behavior is correlated to the closure of pre-existing joint, development of fractures in rock matrix and teeth shearing of the shear plane. To investigate the brittleness of the specimens, the ratio of the residual strength to the maximum peak strength as well as the first and last peak strains were studied. At the same joint inclination angle, the ratios between residual strength and the maximum peak strength and the last peak strains increased while the first peak strain decreased with the increase of joint continuity factor. At the same joint continuity factor, the curves of the three brittleness parameters vs. joint inclina- tion angle can either be concave or convex single-oeak or wave-shaoed.