期刊文献+
共找到618篇文章
< 1 2 31 >
每页显示 20 50 100
Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay 被引量:7
1
作者 章定文 曹智国 +1 位作者 范礼彬 邓永锋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期79-83,共5页
This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations... This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay. 展开更多
关键词 soft marine clay salt concentration CEMENTATION unconfined compression strength
在线阅读 下载PDF
Microstructures and electrochemical behaviors of casting magnesium alloys with enhanced compression strengths and decomposition rates 被引量:1
2
作者 Xuewu Li Qingyuan Yu +1 位作者 Xi Chen Qiaoxin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1213-1223,共11页
New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochem... New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochemical and compression tests are conducted to assess the feasibility as decomposable material.Morphology,composition,phase and distribution are characterized to investigate decomposition mechanism.Results indicate that floccule,substrate component and reticulate secondary phase are formed on as-prepared surface.Sample also acts out enhanced compression strength to maintain pressure and guarantee stability in dissolution process.Furthermore,as decomposition time and zinc content increase,couple corrosion intensifies,resulting in gradually enhanced decomposition rate.Rapid sample decomposition is mainly due to basal anode dissolution,micro particle exfoliation and poor decomposition resistance of corroding product.Such work shows profound significance in preparing new-type accessible alloy to ensure rapid dissolution of fracturing part and guarantee stable compression strength in oil-gas reservoir exploitation. 展开更多
关键词 Magnesium alloy Corrosion dissolution compression strength Electrochemical test Decomposition mechanism
在线阅读 下载PDF
Effect of Sample Disturbance on Unconfined Compression Strength of Natural Marine Clays 被引量:15
3
作者 刘汉龙 洪振舜 《海洋工程:英文版》 2003年第3期407-416,共10页
Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of ... Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data. 展开更多
关键词 correcting method degree of sample disturbance liquid limit natural marine clays natural water content oedometer test data unconfined compressive strength
在线阅读 下载PDF
Strength regularity and failure criterion of plain HSHPC under biaxial compression after exposure to high temperatures
4
作者 何振军 宋玉普 《Journal of Southeast University(English Edition)》 EI CAS 2008年第2期206-211,共6页
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1... Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures stress ratio uniaxial and biaxial compressive strength failure criterion
在线阅读 下载PDF
Degree of compaction and compression strength of Nigerian Alfisol under tilled condition and different machinery traffic passes
5
作者 Fasinmirin Johnson Toyin Adesigbin Adedayo Joseph 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2012年第2期34-41,共8页
Information on the effect of soil compaction on soil mechanical properties such as degree of compaction,compression and shear strength of tropical soils of Nigeria under different machinery traffic passes is very scar... Information on the effect of soil compaction on soil mechanical properties such as degree of compaction,compression and shear strength of tropical soils of Nigeria under different machinery traffic passes is very scarce.Field experiment was conducted in a tilled and compacted sandy clay loam(Alfisol)in Akure,Nigeria,under different machinery traffic passes to determine compaction effects on bulk density,compression strength,degree of compaction and the shear strength of soil.Four plots,A,B,C and D of area 20 m×50 m each were used for the field experiment.Treatment plot A was tilled with a tractor-mounted disc plough,and the remaining three plots:B,C and D were subjected to 5,10 and 15 to and fro passes,respectively,using heavy duty Mercy Fergusson tractor model 4355(3.82 Mg).The treatments were replicated three times in a randomized complete block design.Compacted plots progressively increased the bulk density from 1.63 g/cm^(3) to 1.90 g/cm^(3),but the highest bulk density was observed in plots under 15 traffic passes with the value of(1.90±0.23)g/cm3.The percentage of soil compaction varies from 90.5%to 97%at the 0-10 cm soil layer.The compression strength of soil increased from 31.00 kPa to 42.05 kPa and from 29.68 to 65.44 kPa at the 0-10 cm and 10-20 cm soil layers,respectively,which resulted in the increased shear strength from 15.79 kPa to 21.03 kPa and 14.8 kPa to 32.72 kPa at the 0-10 cm and 10-20 cm in plots under 5 and 15 traffic passes,respectively.Plot A(tilled soil)had the lowest bulk density,degree of compaction and compression strength with values(1.51±0.19)g/cm^(3),88.2%,and(12.15±0.37)kPa,respectively,and consequently the lowest shear strength of(6.02±1.23)kPa,which enhanced air movement and microbial activities in the soil.Soil under 15 traffic passes,especially at the 10-20 cm soil layer,may result in poor root penetration when cropped but can be very reliable and consistent when used for structural purposes. 展开更多
关键词 soil compaction TILLAGE degree of compaction compression strength shear strength farm machine traffic passes bulk density
原文传递
Strength and deformation behaviors of cemented tailings backfill under triaxial compression 被引量:12
6
作者 XU Wen-bin LIU Bin WU Wei-lü 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3531-3543,共13页
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat... It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB. 展开更多
关键词 cemented tailings backfill triaxial compressive strength volumetric strain elastic modulus COHESION friction angle
在线阅读 下载PDF
A new nonlinear empirical strength criterion for rocks under conventional triaxial compression 被引量:11
7
作者 XIE Shi-jie LIN Hang +1 位作者 CHEN Yi-fan WANG Yi-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1448-1458,共11页
The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under di... The failure criterion of rocks is a critical factor involved in reliability design and stability analysis of geotechnical engineering.In order to accurately evaluate the triaxial compressive strength of rocks under different confining pressures,a nonlinear empirical strength criterion based on Mohr-Coulomb criterion was proposed in this paper.Through the analysis of triaxial test strength of 11 types of rock materials,the feasibility and validity of proposed criterion was discussed.For a further verification,six typical strength criteria were selected,and the prediction results of each criterion and test results were statistically analyzed.The comparative comparison results show that the prediction results obtained by applying this new criterion to 97 conventional triaxial compression tests of 11 different rock materials are highly consistent with the experimental data.Statistical analysis was executed to assess the application of the new criterion and other classical criteria in predicting the failure behavior of rock.This proposed empirical criterion provides a new reference and method for the determination of triaxial compressive strength of rock materials. 展开更多
关键词 rock mechanics conventional triaxial compressive strength empirical strength criterion statistic evaluation
在线阅读 下载PDF
Finite Element Analysis of Inclusion Stiffness and Interfacial Debonding on the Elastic Modulus and Strength of Rubberized Mortar
8
作者 Cristian Martínez-Fuentes Pedro Pesante +1 位作者 Karin Saavedra Paul Oumaziz 《Computers, Materials & Continua》 2025年第10期581-595,共15页
Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modu... Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM. 展开更多
关键词 Rubberized mortar elastic modulus compression strength DEBONDING
在线阅读 下载PDF
FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES 被引量:2
9
作者 Zhenjun He Yupu Song 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期149-159,共11页
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char... An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures uniaxial biaxial compressive strength failure criterion stress-strain relationship
在线阅读 下载PDF
Intrinsic Strength Asymmetry Between Tension and Compression of Perfect Face-Centered-Cubic Crystals 被引量:1
10
作者 R.F.Wang J.Xu +2 位作者 R.T.Qu Z.Q.Liu Z.F.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第8期755-762,共8页
The strength asymmetry between tension and compression is a typical case of mechanical response of materials.Here we achieve the intrinsic strength asymmetry of six face-centered-cubic perfect crystals(Cu,Au,Ni,Pt,Al... The strength asymmetry between tension and compression is a typical case of mechanical response of materials.Here we achieve the intrinsic strength asymmetry of six face-centered-cubic perfect crystals(Cu,Au,Ni,Pt,Al and Ir)through calculating the ideal tensile and compressive strength with considering the normal stress effect and the competition between different crystallographic planes.The results show that both the intrinsic factors(the ideal shear strength and cleavage strength of low-index planes)and the orientation could affect the strength asymmetry,which may provide insights into understanding the strength of ultra-strong materials. 展开更多
关键词 Perfect crystal strength asymmetry Tension compression
原文传递
Mechanism of thermal compressive strength evolution of carbon-bearing iron ore pellet without binders during reduction process 被引量:1
11
作者 Hong-tao Wang Yi-bin Wang +3 位作者 Shi-xin Zhu Qing-min Meng Tie-jun Chun Hong-ming Long 《Journal of Iron and Steel Research International》 2025年第4期871-882,共12页
Against the background of“carbon peak and carbon neutrality,”it is of great practical significance to develop non-blast furnace ironmaking technology for the sustainable development of steel industry.Carbon-bearing ... Against the background of“carbon peak and carbon neutrality,”it is of great practical significance to develop non-blast furnace ironmaking technology for the sustainable development of steel industry.Carbon-bearing iron ore pellet is an innovative burden of direct reduction ironmaking due to its excellent self-reducing property,and the thermal strength of pellet is a crucial metallurgical property that affects its wide application.The carbon-bearing iron ore pellet without binders(CIPWB)was prepared using iron concentrate and anthracite,and the effects of reducing agent addition amount,size of pellet,reduction temperature and time on the thermal compressive strength of CIPWB during the reduction process were studied.Simultaneously,the mechanism of the thermal strength evolution of CIPWB was revealed.The results showed that during the low-temperature reduction process(300-500℃),the thermal compressive strength of CIPWB linearly increases with increasing the size of pellet,while it gradually decreases with increasing the anthracite ratio.When the CIPWB with 8%anthracite is reduced at 300℃for 60 min,the thermal strength of pellet is enhanced from 13.24 to 31.88 N as the size of pellet increases from 8.04 to 12.78 mm.Meanwhile,as the temperature is 500℃,with increasing the anthracite ratio from 2%to 8%,the thermal compressive strength of pellet under reduction for 60 min remarkably decreases from 41.47 to 8.94 N.Furthermore,in the high-temperature reduction process(600-1150℃),the thermal compressive strength of CIPWB firstly increases and then reduces with increasing the temperature,while it as well as the temperature corresponding to the maximum strength decreases with increasing the anthracite ratio.With adding 18%anthracite,the thermal compressive strength of pellet reaches the maximum value at 800℃,namely 35.00 N,and obtains the minimum value at 1050℃,namely 8.60 N.The thermal compressive strength of CIPWB significantly depends on the temperature,reducing agent dosage,and pellet size. 展开更多
关键词 Non-blast furnace ironmaking Carbon-bearing iron ore pellet Reduction reaction Thermal compressive strength MECHANISM
原文传递
Microstructure Evolution and Mechanism of Strength Development of Fly Ash Paste
12
作者 MA Shuzhao WU Shunchuan +5 位作者 HUANG Mingqing CHENG Haiyong JIANG Guanzhao NIU Yonghui LIU Zemin SUN Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期152-163,共12页
Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly as... Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste. 展开更多
关键词 paste filling fly ash ACTIVATOR unconfined compressive strength MICROSTRUCTURE hydration simulation
原文传递
Interpretable Machine Learning Method for Compressive Strength Prediction and Analysis of Pure Fly Ash-based Geopolymer Concrete
13
作者 SHI Yuqiong LI Jingyi +1 位作者 ZHANG Yang LI Li 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期65-78,共14页
In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive streng... In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash. 展开更多
关键词 machine learning pure fly ash geopolymer compressive strength feature perception
原文传递
RF Optimizer Model for Predicting Compressive Strength of Recycled Concrete
14
作者 LIU Lin WANG Liuyan +1 位作者 WANG Hui SUN Huayue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期215-223,共9页
Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesi... Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings. 展开更多
关键词 machine learning recycled concrete compressive strength
原文传递
3D Printing of Hierarchical Gyroid Hydroxyapatite-Akermanite Scaffolds with Improved Compressive Strength
15
作者 HUA Shuaibin PENG Chang +4 位作者 CHENG Lijin WU Jiamin ZHANG Xiaoyan WANG Xiumei SHI Yusheng 《硅酸盐学报》 北大核心 2025年第9期2706-2717,共12页
Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biolo... Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties. 展开更多
关键词 bioceramic scaffolds hierarchical gyroid structure compressive strength bioactivity digital light processing
原文传递
Strength Development of Alkali-activated Binders Prepared with Mechanically Ground Fly Ash During Microwave-curing
16
作者 ZHU Huimei LIU Yu LI Hui 《材料导报》 北大核心 2025年第20期108-114,共7页
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ... Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA. 展开更多
关键词 alkali-activated fly ash binder microwave-curing particle size compressive strength
在线阅读 下载PDF
Time series prediction model for compressive strength of ore pellets produced by straight grate
17
作者 Feng Cao Min Gan +5 位作者 Xiao-hui Fan Xu-ling Chen Zhen-xiang Feng Xiao-xian Huang Zhuo-zhang Liao Cheng-hao Xie 《Journal of Iron and Steel Research International》 2025年第8期2320-2333,共14页
The compressive strength of the pellets is a key indicator that determines the production efficiency in straight grate.It usually relies on manual sampling and testing,which is cumbersome and inefficient.To address th... The compressive strength of the pellets is a key indicator that determines the production efficiency in straight grate.It usually relies on manual sampling and testing,which is cumbersome and inefficient.To address this,a time series prediction model for pellet compressive strength was developed,combining a gradient boosting decision tree with a temporal convolutional network(GBDT-TCN).Firstly,the key physical characteristics of the pellet production process were established through the feature construction method,and then the multicollinear features were eliminated based on the Spearman correlation coefficient.The final selection of feature parameters,amounting to 9,was determined using recursive feature elimination(RFE)method.Finally,the GBDT algorithm was used to establish the nonlinear relationship between these features and the compressive strength.The GBDT prediction results and process data were constructed into a time series dataset,which was input into the TCN unit cascade model.The time series information was captured through the distribution coefficient of the loss function in the time series.Results illustrate that the GBDT-TCN method proposed performs well in the task of predicting the compressive strength of pellets.Compared with the prediction model using only GBDT,the accuracy within±100 N is increased from 83.33%to 90.00%. 展开更多
关键词 Straight grate PELLET Compressive strength Multi-feature fusion Prediction GBDT-TCN
原文传递
Developing Hybrid XGBoost Model to Predict the Strength of Polypropylene and Straw Fibers Reinforced Cemented Paste Backfill and Interpretability Insights
18
作者 Yingui Qiu Enming Li +2 位作者 Pablo Segarra Bin Xi Jian Zhou 《Computer Modeling in Engineering & Sciences》 2025年第8期1607-1629,共23页
With the growing demand for sustainable development in the mining industry,cemented paste backfill(CPB)materials,primarily composed of tailings,play a crucial role in mine backfilling and underground support systems.T... With the growing demand for sustainable development in the mining industry,cemented paste backfill(CPB)materials,primarily composed of tailings,play a crucial role in mine backfilling and underground support systems.To enhance the mechanical properties of CPB materials,fiber reinforcement technology has gradually gained attention,though challenges remain in predicting its performance.This study develops a hybrid model based on the adaptive equilibrium optimizer(adap-EO)-enhanced XGBoost method for accurately predicting the uniaxial compressive strength of fiber-reinforced CPB.Through systematic comparison with various other machine learning methods,results demonstrate that the proposed hybridmodel exhibits excellent predictive performance on the test set,achieving a coefficient of determination(R^(2))of 0.9675,root mean square error(RMSE)of 0.6084,and mean absolute error(MAE)of 0.4620.Input importance analysis reveals that cement-tailings ratio,curing time,and concentration are the three most critical factors affectingmaterial strength,with cement-tailings ratio showing a positive correlation with strength,concentrations above 70% significantly improvingmaterial strength,and curing periods beyond 28 days being essential for strength development.Fiber parameters contribute secondarily but notably to material strength,with fiber length exhibiting an optimal range of approximately 12 mm.This study not only provides a high-precision strength prediction model but also reveals the inherent correlations between various parameters and material performance,offering scientific basis for mixture optimization and engineering applications of fiber-reinforced CPB materials. 展开更多
关键词 Cemented paste backfill fiber-enhanced compressive strength prediction XGBoost adap-EO algorithm SHAP
在线阅读 下载PDF
Harnessing Machine Learning for Superior Prediction of Uniaxial Compressive Strength in Reinforced Soilcrete
19
作者 Ala’a R.Al-Shamasneh Faten Khalid Karim Arsalan Mahmoodzadeh 《Computers, Materials & Continua》 2025年第7期281-303,共23页
Soilcrete is a composite material of soil and cement that is highly valued in the construction industry.Accurate measurement of its mechanical properties is essential,but laboratory testing methods are expensive,timec... Soilcrete is a composite material of soil and cement that is highly valued in the construction industry.Accurate measurement of its mechanical properties is essential,but laboratory testing methods are expensive,timeconsuming,and include inaccuracies.Machine learning(ML)algorithms provide a more efficient alternative for this purpose,so after assessment with a statistical extraction method,ML algorithms including back-propagation neural network(BPNN),K-nearest neighbor(KNN),radial basis function(RBF),feed-forward neural networks(FFNN),and support vector regression(SVR)for predicting the uniaxial compressive strength(UCS)of soilcrete,were proposed in this study.The developed models in this study were optimized using an optimization technique,gradient descent(GD),throughout the analysis(direct optimization for neural networks and indirect optimization for other models corresponding to their hyperparameters).After doing laboratory analysis,data pre-preprocessing,and data-processing analysis,a database including 600 soilcrete specimens was gathered,which includes two different soil types(clay and limestone)and metakaolin as a mineral additive.80%of the database was used for the training set and 20%for testing,considering eight input parameters,including metakaolin content,soil type,superplasticizer content,water-to-binder ratio,shrinkage,binder,density,and ultrasonic velocity.The analysis showed that most algorithms performed well in the prediction,with BPNN,KNN,and RBF having higher accuracy compared to others(R^(2)=0.95,0.95,0.92,respectively).Based on this evaluation,it was observed that all models show an acceptable accuracy rate in prediction(RMSE:BPNN=0.11,FFNN=0.24,KNN=0.05,SVR=0.06,RBF=0.05,MAD:BPNN=0.006,FFNN=0.012,KNN=0.008,SVR=0.006,RBF=0.009).The ML importance ranking-sensitivity analysis indicated that all input parameters influence theUCS of soilcrete,especially the water-to-binder ratio and density,which have themost impact. 展开更多
关键词 Soilcrete laboratory analysis uniaxial compressive strength machine learning sensitivity analysis
在线阅读 下载PDF
Data-driven intelligent modeling of unconfined compressive strength of heavy metal-contaminated soil
20
作者 Syed Taseer Abbas Jaffar Xiangsheng Chen +3 位作者 Xiaohua Bao Muhammad Nouman Amjad Raja Tarek Abdoun Waleed El-Sekelly 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1801-1815,共15页
This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC)... This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC).For dataset collection,an extensive experimental program was designed to estimate the unconfined compressive strength(Qu)of heavy metal-contaminated soils collected from awide range of land use pattern,i.e.residential,industrial and roadside soils.Accordingly,a robust comparison of predictive performances of four data-driven models including extreme learning machines(ELMs),gene expression programming(GEP),random forests(RFs),and multiple linear regression(MLR)has been presented.For completeness,a comprehensive experimental database has been established and partitioned into 80%for training and 20%for testing the developed models.Inputs included varying levels of heavy metals like Cd,Cu,Cr,Pb and Zn,along with OPC.The results revealed that the GEP model outperformed its counterparts:explaining approximately 96%of the variability in both training(R2=0.964)and testing phases(R^(2)=0.961),and thus achieving the lowest RMSE and MAE values.ELM performed commendably but was slightly less accurate than GEP whereas MLR had the lowest performance metrics.GEP also provided the benefit of traceable mathematical equation,enhancing its applicability not just as a predictive but also as an explanatory tool.Despite its insights,the study is limited by its focus on a specific set of heavy metals and urban soil samples of a particular region,which may affect the generalizability of the findings to different contamination profiles or environmental conditions.The study recommends GEP for predicting Qu in heavy metal-contaminated soils,and suggests further research to adapt these models to different environmental conditions. 展开更多
关键词 Contaminated soil Heavy metals Machine learning Predictive modeling Compressive strength
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部