期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Compression Properties and Energy Absorption of A Novel Double Curved Beam Negative Stiffness Honeycomb Structures
1
作者 ZHENG Ze-peng WANG Shu-qing +1 位作者 WANG Xi-chen YUE Wen 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期821-837,共17页
This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads.... This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads.An analytical formula for the force-displacement relationship of the honeycomb single-cell structure is presented based on the modal superposition method.This formula provides a theoretical basis for predicting the compression performance of honeycomb structures.The effects of structural geometric parameters,series and parallel connection methods on the mechanical and energy absorption properties are investigated through mathematical modeling and experimental methods.Furthermore,the study focuses on the vibration isolation and impact resistance performance of honeycomb panels.The results show that the designed honeycomb structure has good mechanical and energy absorption performance,and its energy absorption effect is related to the geometric parameters and series and parallel connection methods of the structure.The isolation efficiency of the honeycomb with 4 rows and 3 columns reaches 38%.The initial isolation frequency of the isolator is 11.7 Hz. 展开更多
关键词 double curved beam compression properties energy absorption vibration isolation
在线阅读 下载PDF
Effect of Weft Binding Structure on Compression Properties of Three-Dimensional Woven Spacer Fabrics and Composites 被引量:1
2
作者 刘生杰 江飞 +3 位作者 曾金金 邵慧奇 蒋金华 陈南梁 《Journal of Donghua University(English Edition)》 CAS 2023年第5期490-499,共10页
With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we... With the wide use of three-dimensional woven spacer composites(3DWSCs),the market expects greater mechanical properties from this material.By changing the weft fastening method of the traditional I-shape pile yarns,we designed three-dimensional woven spacer fabrics(3DWSFs)and 3DWSCs with the weft V-shape to improve the compression performance of traditional 3DWSFs.The effects of weft binding structures,V-pile densities,and V-shaped angle were investigated in this paper.It is found that the compression resistance of 3DWSFs with the weft V-shape is improved compared to that with the weft I-shape,the fabric height recovery rate is as high as 95.7%,and the average elastic recovery rate is 59.39%.When the interlayer pile yarn density is the same,the weft V-shaped and weft I-shaped 3DWSCs have similar flatwise pressure and edgewise pressure performance.The compression properties of the composite improve as the density of the V-pile yarns increases.The flatwise compression load decreases as the V-shaped angle decreases.When the V-shaped angle is 28°and 42°,the latitudinal V-shaped 3DWSCs perform exceptionally well in terms of anti-compression cushioning.The V-shaped weft binding method offers a novel approach to structural design of 3DWSCs. 展开更多
关键词 weft V-shaped binding three-dimensional woven spacer fabric(3DWSF) compression property pile yarn density V-shaped angle
在线阅读 下载PDF
Effects of Yttrium and Cerium on Compression Properties of Ni_3Al-Base Alloys
3
作者 李辉 郭建亭 +2 位作者 孙超 王淑荷 谭明晖 《Journal of Rare Earths》 SCIE EI CAS CSCD 1992年第1期44-48,共5页
The effects of yttrium and cerium on the compression properties of Ni_3Al-base alloys have been investigated.The results reveal that the addition of about 0.1 wt% Y to Ni_3Al-B alloy is effective for improving the duc... The effects of yttrium and cerium on the compression properties of Ni_3Al-base alloys have been investigated.The results reveal that the addition of about 0.1 wt% Y to Ni_3Al-B alloy is effective for improving the ductility at 1100℃.A ductility increase of about 100% is observed for this Y doped alloy.The yttrium re- fines grains of the alloy.An YNi_5 phase is found to be precipitated on the grain boundaries in the alloy con- taining 0.3 wt% Yor more.Adding about 0.1 wt% Ce to Ni_3Al-B-Cr-Zr alloy obviously improves the ductility of the alloy at 1100℃.A ductility increase of about 50% is obtained for this alloy.The added cerium also pre- vents the formation of γ+γ' eutectic and refines it.The bulk phase of CeNi_4 appeares at the front of the eutectic in the alloys containing 0.1 wt% Ce or more. 展开更多
关键词 YTTRIUM CERIUM Compressive properties Ni_3Al CeNi_4
在线阅读 下载PDF
Axial Compression Properties of 3D Woven Special⁃Shaped Square Tubular Composites with Basalt Filament Yarns
4
作者 ZHANG Huawei WANG Jingjing LÜ Lihua 《Journal of Donghua University(English Edition)》 CAS 2021年第5期398-403,共6页
In order to avoid the delamination of traditional laminated tubular composites,on an ordinary loom,the 3D woven special⁃shaped square tubular fabrics were woven with environment⁃friendly basalt filament yarns,and then... In order to avoid the delamination of traditional laminated tubular composites,on an ordinary loom,the 3D woven special⁃shaped square tubular fabrics were woven with environment⁃friendly basalt filament yarns,and then the 3D woven special⁃shaped square tubular composites were prepared with epoxy resin by a vacuum⁃assisted resin transfer molding(VARTM)process.Through experiments and software fitting,the axial compression properties of composites were analyzed.The polynomial fitting formulas of load⁃displacement curve and energy⁃displacement curve were obtained by using least square methods.The results showed that the 3D woven special⁃shaped square tubular composites had good axial compression performance,and with the increase of the composite thickness,compressive strength and energy absorption increased significantly.The failure mode was analyzed in the paper,thus revealing the failure stress propagation,local stress concentration,and failure morphology.It provides an effective reference for the design and application of the 3D woven special⁃shaped square tubular composite. 展开更多
关键词 3D woven fabric square tubular composite compression property failure mode POLYNOMIAL
在线阅读 下载PDF
On the microstructural,mechanical,damping,wear properties of magnesium alloy AZ91-3 vol.%SiCP-3 vol.%fly ash hybrid composite and property correlation thereof
5
作者 Prince Gollapalli Mridul Pant +1 位作者 A.R.Anil Chandra M.K.Surappa 《Journal of Magnesium and Alloys》 2025年第5期2374-2389,共16页
A combination of hard(SiCP)and soft(fly ash)particulate reinforcements could be a strategy to enhance combination of multiple properties of Magnesium and its alloys which otherwise suffer from low stiffness,low wear r... A combination of hard(SiCP)and soft(fly ash)particulate reinforcements could be a strategy to enhance combination of multiple properties of Magnesium and its alloys which otherwise suffer from low stiffness,low wear resistance,and many other critical properties.However,at present a comprehensive and robust map correlating different properties in particle-reinforced composites is much lacking.In this work,an industrial grade AZ91 magnesium alloy reinforced with hard SiC and soft fly ash particles(with 3 vol.%each),has been prepared using stir casting followed by hot extrusion at 325℃with a ratio of 21.5.Microstructure of the hybrid composite was characterized using optical and scanning electron microscopes.The composite exhibited a reduction in average grain size from 13.6 to 7.1μm,concomitantly an increase in Vickers hardness from 73 to 111 HV.The tension-compression yield asymmetry ratios of the unreinforced alloy and hybrid composite were 1.165 and 0.976,respectively indicating higher yield strength for the composite under compressive load.The composite exhibited 76%improvement in damping capacity under time sweep mode,and 28%improvement at 423 K under temperature sweep mode.The tribological characteristics of the composite under dry sliding conditions at sliding speeds and loads in the range of 0.5 to 1.5 m s^(-1)and 10 to 30 N,respectively showed higher wear resistance than the unreinforced alloy.The composite showed 23%improvement in sliding wear resistance at a load of 20 N and a speed of 1 m s^(-1).Finally,efforts have been made to understand the influence of one property on the other by developing statistical property correlation maps from the properties obtained in this study and from the literature.These maps are expected to help in the design of hybrid Metal Matrix Composites for a variety of targeted applications in different sectors. 展开更多
关键词 Hybrid metal matrix composite Tensile and compressive properties FRACTOGRAPHY DAMPING WEAR Property correlation map
在线阅读 下载PDF
Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-compenent alloy 被引量:12
6
作者 陈秋实 卢一平 +2 位作者 董勇 王同敏 李廷举 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2958-2964,共7页
The influences of slight amount of B element on the microstructure and properties of AlCoCrFeNiBx high entropy alloys(x = 0,0.01,…,0.09 and 0.1,mole fraction) were investigated.The AlCoCrFeNi high entropy alloy exh... The influences of slight amount of B element on the microstructure and properties of AlCoCrFeNiBx high entropy alloys(x = 0,0.01,…,0.09 and 0.1,mole fraction) were investigated.The AlCoCrFeNi high entropy alloy exhibits equiaxed grain structures with obvious composition segregation.However,with the addition of B element,the alloys exhibit dendrite structures.Inside the dendrites,spinodal decomposition structure can be clearly observed.With the addition of B element,the crystal structures change from(B2 + BCC) to(B2 + BCC + FCC) structures,and the hardness firstly increases from HV 486.7 to HV 502.4,then declines to HV 460.7(x ≥ 0.02).The compressive fracture strength firstly shows a trend of increasing,and then declining(x ≥ 0.08).The coercive forces and the specific saturation magnetizations of the alloys decrease as B addition contents increase,the decreasing coercive forces show a better soft magnetic behavior. 展开更多
关键词 high entropy alloy B element microstructure compressive properties HARDNESS magnetic properties
在线阅读 下载PDF
Microstructures,corrosion and mechanical properties of as-cast Mg-Zn-Y-(Gd)alloys 被引量:14
7
作者 史菲 王春青 张忠明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2172-2180,共9页
Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mec... Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mechanical properties of which were investigated,separately.The results reveal that the microstructures of the as-cast Mg(94)Zn3YxGd(3-x) alloys,with n(Zn)/n(Y+Gd)=1:1,consist of α(Mg) phase,Mg3Zn3RE2(W) phase,Mg(12)ZnRE(14H-LPSO) phase and a few bright cube-shaped Mg-Y-Gd phases.The formation and the distribution of LPSO-phase in the alloys can be influenced by the content of Gd.The volume fraction of 14H-LPSO phase increases first and then decreases with the increase of the Gd content.For the electrochemical impedance spectroscopy(EIS) measurement,a R(Q(R(QR))) model was used to fit the test results in 3.5%(mass fraction) NaCl solution at room temperature.The corrosion current densities of all samples are about 10-(-5) A/cm-2.When x(Gd)≤1%,Mg-Zn-Y-(Gd)alloy shows good corrosion resistance,which is better than that of the commercial AZ91 D magnesium alloy.The corrosion rate increases when the Gd content is higher than 1.5%.At room temperature,the compressive properties of Mg-Zn-Y-(Gd) alloys increase remarkably with the increase of the volume fraction of LPSO phase.In addition,the pinning effect of W-phase and dispersive cube-shaped Mg-Y-Gd phase is beneficial to improving the mechanical properties of as-cast Mg(94)Zn3YxGd(3-x) alloy in deformation process. 展开更多
关键词 as-cast magnesium alloy Mg-Zn-Y-(Gd) alloy 14H-LPSO phase corrosion property compressive properties
在线阅读 下载PDF
Influence of hydrogen content on room temperature compressive properties of Ti-6Al-4V alloy at high strain rate 被引量:6
8
作者 袁宝国 于海平 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2943-2951,共9页
Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the m... Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed. 展开更多
关键词 Ti-6Al-4V alloy hydrogen content electromagnetic forming compressive property thermohydrogen processing
在线阅读 下载PDF
Mechanical Properties and Energy Absorption of Integrated AlSi10Mg Shell Structures with BCC Lattice Infill
9
作者 Yingchun Bai Jiayu Gao +1 位作者 Chengxiang Huang Yue Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期159-171,共13页
Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure t... Shell-infill structures comprise an exterior solid shell and an interior lattice infill,whose closed features yield superior comprehensive mechanical performance and light weight.Additive manufacturing(AM)can ensure the fabrica-tion of complex structures.Although the mechanical behaviors of lattice structures have been extensively studied,the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill.This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM.Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior.In addition,two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior.A study of different parameters,including lattice diameters and shell thicknesses,was conducted to identify their effect on mechanical performance.The results demonstrate the mechanical advantages of shell-infill structures,in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young’s modulus.Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times. 展开更多
关键词 Shell-infill structure Body center cubic(BCC) Additive manufacturing compression properties Energy absorption
在线阅读 下载PDF
Fabrication,structure and compression performance of Inconel 617 superalloy honeycomb
10
作者 WANG Hongwei,WEI Zunjie,ZHU Zhaojun,and LI Zhiwei School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期199-204,共6页
Inconel 617 metal honeycombs with designed porosity,cell size and cell morphology were fabricated using fused deposition modelling rapid prototype manufacturing.The microstructure and compression properties of Inconel... Inconel 617 metal honeycombs with designed porosity,cell size and cell morphology were fabricated using fused deposition modelling rapid prototype manufacturing.The microstructure and compression properties of Inconel 617 metal honeycomb were studied.The results indicate that Inconel 617 metal honeycomb structure can be fabricated using fused deposition modelling technique,the processes are simple and the size of honeycomb is controllable.The sintered Inconel 617 honeycombs consist of matrix,γ phase,and grain boundary precipitates,Cr7C3 and M23C6 type carbides.The honeycomb microstructure sintered using fine powder particles are denser than that of coarse powder particles.Yield strength and Young’s modulus increase with the relative density of honeycomb increasing.But the influence of the relative density on Young’s modulus is greater than that of yield strength. 展开更多
关键词 rapid prototype fused deposition modelling metal honeycomb compression properties
在线阅读 下载PDF
Compressive properties and energy absorption characteristics of open-cell nickel foams 被引量:1
11
作者 范素峰 张涛 +6 位作者 余琨 房宏杰 熊汉青 戴翌龙 马家骥 姜大越 朱化龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期117-124,共8页
Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties... Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties of the nickel foams including yield strength, elastic modulus, energy absorption density and energy absorption efficiency were calculated accurately. The results show that the compressive properties of yield strength, elastic modulus and energy absorption density increase with the increase of relative density of nickel foams. The compressive properties are sensitive to the pre-stretching degree, and the values of yield strength, elastic modulus and energy absorption density decrease with the increase of pre-stretching degree. However, the energy absorption efficiency at the densification strain state exhibits the independence of relative density and pre-stretching degree. The value of energy absorption efficiency reaches its peak when the strain is at the end of the collapse plateau region. 展开更多
关键词 nickel foam compressive property relative density pre-stretching degree
在线阅读 下载PDF
Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys 被引量:18
12
作者 B.N.Du Z.Y.Hu +6 位作者 L.Y.Sheng D.K.Xu Y.X.Qiao B.J.Wang J.Wang Y.F.Zheng T.F.Xi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第1期44-55,共12页
A new type of Mg-Zn-Y-Nd alloy for degradable orthopedic implants was developed.In the present study,the Zn and Y content was adjusted and their influences on the microstructures and mechanical behaviors were discusse... A new type of Mg-Zn-Y-Nd alloy for degradable orthopedic implants was developed.In the present study,the Zn and Y content was adjusted and their influences on the microstructures and mechanical behaviors were discussed in depth.The results showed that the as-extruded Mg-Zn-Y-Nd alloys are mainly composed of fine dynamic recrystallized grains(DRXed grains),la rge unDRXed grains and linearly distributed secondary phases.The cha nge of Zn content exerts little influence on the grain structure of the extruded Mg-Zn-Y-Nd alloy,while the increase of Y content would hinder the dynamic recrystallization process and the growth of the DRXed grains,thus the size and volume fraction of the equiaxed DRXed grains decrease.The tensile and compressive properties are very little affected by Zn content because of the similar grain structure.As Y content increases,the tensile yield strength(TYS) and ultimate strength(TUS) increase while the elongation decreases,this is caused by a combined strengthening effect of grain refinement,texture,precipitation and twinning.The compressive yield strength(CYS) and ultimate strength(CUS) of Mg-Zn-Y-Nd alloy with diffe rent Y content exhibit a similar tendency as the tensile test. 展开更多
关键词 Mg-Zn-Y-Nd alloy Microstructure Tensile properties Compressive properties Basal texture TWIN
原文传递
Microstructure and compression deformation behavior in the quasicrystalreinforced Mg-8Zn-1Y alloy solidified under super-high pressure 被引量:10
13
作者 董允 林小娉 +4 位作者 徐瑞 郑润国 樊志斌 刘士俊 王哲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第11期1048-1055,共8页
The microstructure of Mg-8Zn-1Y alloy solidified under super-high pressure was analyzed through X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). And, compression... The microstructure of Mg-8Zn-1Y alloy solidified under super-high pressure was analyzed through X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). And, compression deformation behavior at room-temperature was studied. The results showed that the microstructure of Mg-8Zn-1Y alloy solidified under ambient pressure and super-high pressure was both mainly composed of ■-Mg and quasicrystal I-Mg3Zn6 Y. Solidification under super-high pressure contributed to refining solidified microstructure and changing morphology of the intergranular second phase. The morphology of intergranular second phase(quasicrystal I-Mg3Zn6Y) was transformed from continuous network(ambient pressure) to long island(high pressure) and finally to granular(super-high pressure) with the increase in pressure. The compressive strength, yield strength and rupture strain of the samples solidified under ambient pressure were significantly improved from 262.6 MPa, 244.4 MPa and 13.3% to 437.3 MPa, 368.9 MPa and 24.7% under the pressure of 6 GPa, respectively. Under ambient pressure, cleavage plane on compressive fracture was large and smooth. When it was solidified under the pressure ranging from 4 to 6 GPa, cleavage plane on compressive fracture was small and coarse. In addition, dimple, tear ridge and lobate patterns existed. 展开更多
关键词 Mg-8Zn-1Y alloy super-high solidification solidified microstructure room-temperature compression deformation compressive property rare earths
原文传递
Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method 被引量:6
14
作者 T.GERAMIPOUR H.OVEISI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1569-1579,共11页
Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures w... Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively. 展开更多
关键词 aluminum foam powder metallurgy CACO3 foaming agent semi open-cell microstructure EXPANSION compressive properties
在线阅读 下载PDF
Effects of Chromium on the Microstructures and Mechanical Properties of AlCoCrxFeNi2.1 Eutectic High Entropy Alloys 被引量:8
15
作者 Hui Jiang Li Li +2 位作者 Rui Wang Kaiming Han Quanwei Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第11期1565-1573,共9页
In the present study,a series of AlCoCrxFeNi2.1(x=0,0.25,0.5,0.75,1.0)eutectic high entropy alloys(EHEAs)have been designed and prepared.And the effect of Cr content on the microstructures and mechanical properties of... In the present study,a series of AlCoCrxFeNi2.1(x=0,0.25,0.5,0.75,1.0)eutectic high entropy alloys(EHEAs)have been designed and prepared.And the effect of Cr content on the microstructures and mechanical properties of the AlCoCrxFeNi2.1 alloys was systematically investigated.The results indicate that the AlCoCrxFeNi2.1(x>0)alloys exhibit almost complete lamellar eutectic microstructures with a mixture structure of FCC and B2 phases.And the AlCoFeNi2.1 alloy without Cr element exhibited a hypoeutectic microstructure with a primary B2 phase.In addition,the eutectic microstructures for AlCoCrxFeNi2.1 eutectic alloys do not change significantly.The room temperature compressive tests results show that with an increase in Cr content(from x=0 to x=1.0),the yield strength will first decrease,and thereafter increase.The trend is the opposite with the fracture strength and plastic strain.They show an increase trend at first,and then decrease.The AlCoCr0.5 FeNi2.1(Cr0.5)alloy shows the best comprehensive mechanical properties.The tensile yield strength,fracture strength,and elongation are 536.5 MPa,1062 MPa,and 13.8%,respectively.Furthermore,the Cr0.5 alloy also displays a high strength with a yield strength of 362 MPa at 700℃.In summary,by changing the Cr content,AlCoCrxFeNi2.1 eutectic high entropy alloys with excellent comprehensive mechanical properties were obtained and prepared. 展开更多
关键词 EUTECTIC High entropy alloy Compressive properties Tensile strength
原文传递
Optimizing Mechanical Properties of AlCoCrFeNiTi_x High-Entropy Alloys by Tailoring Microstructures 被引量:6
16
作者 Yinfeng WANG Shengguo MA +3 位作者 Xiaohua CHEN Juyan SHI Yong ZHANG Junwei QIAO 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第3期277-284,共8页
The effects of Ti additions and the heat treatment on the mechanical properties of AlCoCrFeNiTix (x = 0, 0.2, 0.3, 0.4 and 0.5) high-entropy alloys (HEAs) were studied. The results show that the dendrite phase wit... The effects of Ti additions and the heat treatment on the mechanical properties of AlCoCrFeNiTix (x = 0, 0.2, 0.3, 0.4 and 0.5) high-entropy alloys (HEAs) were studied. The results show that the dendrite phase with a body-centered-cubic (bcc) structure transforms into the interdendrite phase with a new bcc structure. With the increase of the Ti contents and heat-treatment temperature, the average hardness and yield strengths are greatly improved, and the highest hardness and yielding strength are 583 HV and 2.07 GPa, respectively in the investigated HEA system. The as-cast and annealed HEAs exhibit excellent mechanical properties, combining with high yielding strength and plasticity. The solid solution strengthening mechanism of Ti additions is responsible for the strengthening effect of AlCoCrFeNiTix HEAs. 展开更多
关键词 High-entropy alloy MICROSTRUCTURE Compressive property HARDNESS Heat treatment
原文传递
Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam 被引量:8
17
作者 X.C.Xia X.W.Chen +4 位作者 Z.Zhang X.Chen W.M.Zhao B.Liao B.Hur 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第4期330-335,共6页
In our current work,AZ31 magnesium alloy foams with closed-cell were successfully fabricated by melt foaming method using Ca and CaCO3 as thickening and blowing agent,respectively.The influences of porosity and pore s... In our current work,AZ31 magnesium alloy foams with closed-cell were successfully fabricated by melt foaming method using Ca and CaCO3 as thickening and blowing agent,respectively.The influences of porosity and pore size on the quasi-static compressive properties of the foams were systematically investigated.The results showed that the yield strength,energy absorption capacity and ideality energy absorption efficiency were decreased with the increase in porosity.However,specimens with porosities of 60%,65%and 70%possessed similar total energy absorption capacity and ideality energy absorption efficiency.Meanwhile,experimental results showed that mean plateau strength of the foams was increased first and then decreased with increase in mean pore size.In addition,energy absorption capacities were almost the same in the initial stage,while the differences were obvious in the middle stage.From the engineering point of view,the specimens with mean pore size of 1.5 mm possess good combination of mean plateau strength and energy absorption characteristics under the present conditions. 展开更多
关键词 Metal foam Melt forming method Mg alloy foam Compressive property
在线阅读 下载PDF
Effect of Zr on microstructure and mechanical properties of binary TiAl alloys 被引量:3
18
作者 Rui-run CHEN Xiao-ye ZHAO +4 位作者 Yong YANG Jing-jie GUO Hong-sheng DING Yan-qing SU Heng-zhi FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第9期1724-1734,共11页
Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no... Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture. 展开更多
关键词 TiAl binary alloy ZIRCONIUM microstructure evolution phase transformation compressive properties
在线阅读 下载PDF
Microstructure and properties of hydrogenated TB8 alloy 被引量:3
19
作者 Ping Li Bao-Guo Yuan +1 位作者 Ke-Min Xue Zheng Jiang 《Rare Metals》 SCIE EI CAS CSCD 2017年第4期242-246,共5页
Thermohydrogen processing can enhance workability, decrease flow stress and deforming tempera- ture of titanium alloys. In this study, thermohydrogen processing was carried out for metastable β-type TB8 alloy. The mi... Thermohydrogen processing can enhance workability, decrease flow stress and deforming tempera- ture of titanium alloys. In this study, thermohydrogen processing was carried out for metastable β-type TB8 alloy. The microstructures of hydrogenated TB8 alloy were investigated based on scanning electron microscopy (SEM), transmission electronic microscopy (TEM) as well as X-ray diffraction (XRD) analysis. The results reveal that 6 hydride phase forms in the hydrogenated TB8 alloy, but the amount of β phase increases with hydrogen content increasing. Single β phase appears when the hydrogen content reaches 0.7 wt%. The alloying elements redistrib- ute in the hydrogenated TB8 alloy, and hydrogen leads to the reduction of the alloying elements in β phase. The room-temperature compression tests were performed on a MTS809 machine. It is found that the room-temperature yield strength of hydrogenated TB8 alloy decreases. And minimum yield strength is obtained at a hydrogen content of 0.5 wt%. The ductility does not decrease within 0.7 wt% hydrogen content. These results provide theoretical basis for improving the formability and promoting the applica- tions of TB8 alloy. 展开更多
关键词 Thermohydrogen processing TB8 alloy MICROSTRUCTURE compression property
原文传递
Microstructure and properties of novel quinary multi-principal element alloys with refractory elements 被引量:3
20
作者 Na-na Guo Liang Wang +4 位作者 Yan-qing Su Liang-shun Luo Xin-zhong Li Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE CAS 2015年第5期319-325,共7页
Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel ... Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys. 展开更多
关键词 high temperature alloys high-entropy alloy crystal structure and microstructure HARDNESS compressive property
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部