Microstructure and texture in 6016 aluminum alloy during hot compression were researched with a uni- axial compression experiment. Through the electron back- scattered diffraction (EBSD) and X-ray diffraction (XRD...Microstructure and texture in 6016 aluminum alloy during hot compression were researched with a uni- axial compression experiment. Through the electron back- scattered diffraction (EBSD) and X-ray diffraction (XRD) analysis technology, it is shown that the subgrain nucle- ation and recrystallization occur in 6016 aluminum alloy during hot compressing, and strong rolling textures such as (110) fiber texture, Brass, S, and Goss form. With the deformation passes increasing, (110) fiber texture, Brass and S are enhanced. In the heat preservation stage after deformation, recrystallization continues until heat preser- vation for 60 s, and a duplex microstructure of deformation and recrystallization grains is built. At the beginning of heat preservation, recrystallization grains with the Goss texture and random orientation are formed in original grains with S or Brass texture, which makes the volume fraction of S and Brass texture decrease. Then, the complex grain growth process makes the volume fraction of Brass, S, and Goss texture increase, while that of random orien- tation decrease.展开更多
With the popularity of deep learning tools in image decomposition and natural language processing,how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem...With the popularity of deep learning tools in image decomposition and natural language processing,how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem to be solved.These parameters are huge and can be as many as millions.At present,a feasible direction is to use the sparse representation technique to compress the parameter matrix to achieve the purpose of reducing parameters and reducing the storage pressure.These methods include matrix decomposition and tensor decomposition.To let vector take advance of the compressing performance of matrix decomposition and tensor decomposition,we use reshaping and unfolding to let vector be the input and output of Tensor-Factorized Neural Networks.We analyze how reshaping can get the best compress ratio.According to the relationship between the shape of tensor and the number of parameters,we get a lower bound of the number of parameters.We take some data sets to verify the lower bound.展开更多
Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of a...Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.展开更多
Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, wh...Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, which leads to data implosion and redundancy. To reduce traffic load of the network, a data compressing based target tracking protocol is proposed in this work. It first incorporates a clustering based data gather method to group sensor nodes into clusters. Then a novel threshold technique with bounded error is proposed to exploit the spatial correlation of sensed data and compress the data in the same cluster. Finally, the compact data presentations are transmitted to the base-station for targets localization. We evaluate our approach with a comprehensive set of simulations. It can be concluded that the proposed method yields excellent performance in energy savings and tracking quality.展开更多
By means of density functional theory calculations, an orthogonal boron-carbon-nitrogen compound called (3,0)- BC2N is predicted, which can be obtained by transversely compressing (3,03 carbon nanotubes (CNTs) an...By means of density functional theory calculations, an orthogonal boron-carbon-nitrogen compound called (3,0)- BC2N is predicted, which can be obtained by transversely compressing (3,03 carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). Its structural stability, elastic properties, mechanical properties and electronic structure are systematically investigated. The results show that (3,0)-BU2N is a superhard material with a direct bandgap. However, its similar structures, (3,0)-C and (3,0)-BN are indirect semiconductors. Strikingly, (3,0)-C is harder than diamond. We also simulate the x-ray diffraction of (3,0)-BC2N to support future experimental investigations. In addition, our study shows that the transition from (3,03 CNTS and BNNTs to (3,0)-BC2N is irreversible.展开更多
Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of supe...Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of superimposed lightning strikes.This device can extinguish the power frequency continuous current arc quickly in 1-2 ms.It is far less than the response time of relay protection,which can avoid lightning trips and improve the reliability of power supply.The computer simulation and engineering practice show that the compressing arc extinguishing device has good protection effect on superimposed lightning strikes.展开更多
Solving the shortest tool length quickly under a known tool trajectory in multi-axis machining of complex channel parts is an urgent problem in industrial production. To solve this problem, a novel and efficient metho...Solving the shortest tool length quickly under a known tool trajectory in multi-axis machining of complex channel parts is an urgent problem in industrial production. To solve this problem, a novel and efficient method is proposed which is featured by extracting only a few necessary curves from the check surface instead of sampling the entire surface. By rotating and compressing the 3 D check surface relative to all tool postures, the boundaries of the area occupied by the 2 D compressed surfaces are the essential elements for determining the shortest tool length. A tracking-based numerical algorithm is introduced to efficiently solve the silhouette curves which are formed in compressing. To define the multi-taper shaped tool holding system(THS) which is commonly used in production, a characterization model for THS profile is established. A model for solving the shortest tool length is finally constructed based on the critical interference relationship between the THS profile and all compressed boundary curves. For acceleration, the boundary splines are segmented according to their knot vectors. Then a new concept called the axis-aligned tool length box(AATB) is introduced,which can provide a conservative range of tool length for a spline segment. By scanning the AATBs of all spline segments, the very few effective spline segments that may ultimately determine the shortest tool length are filtered out. This acceleration method makes the solution for the shortest tool length more focused and efficient. The results of experimental examples are also reported to validate the efficiency and accuracy of the proposed algorithm.展开更多
The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and ...The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and saving the structured grid are proposed.In the present method,the geometric coordinates of the six logical domains of one grid block is saved instead of all grid vertex coordinates to reduce the size of the structured grid file when the grid is compressed.And all grid vertex coordinates are recovered from the compressed data with the use of the transfinite interpolation algorithm when the grid is decompressed.Firstly,single-block grid cases with different edge vertexes are tested to investigate the compression effect.The test results show that a higher compression ratio will be obtained on a larger grid.Secondly,further theoretical analysis is carried out to investigate the effects of parameters on grid compression.The analysis on single-block grid compression shows that the compression ratio is proportionate to the cubic root of the number of total vertexes.The highest compression ratio of single-block grid is obtained when the numbers of vertexes in three logical directions are equal.The analysis on multi-block grid compression shows that a higher compression ratio will be obtained when a larger difference of total vertexes number exists among the grid blocks.Finally,multi-blockgrids of two industrial aircraft configurations are compressed to validate the method.The compression results demonstrate that the present method has an excellent ability on structured grid compression.For a million-vertex structured grid,more than 80 percent disk space can be saved after compression.展开更多
An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale.The space charge f...An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale.The space charge forces in a multi-electron bunch will greatly broaden the electron pulse width,and therefore limit the temporal resolution of the high brightness electron pulse.Here in this work,we design an ultrafast electron diffraction system,and utilize a radio frequency cavity to realize the ultrafast electron pulse compression.We experimentally demonstrate that the stretched electron pulse width of14.98 ps with an electron energy of 40 keV and the electron number of 1.0 ×10;can be maximally compressed to about0.61 ps for single-pulse measurement and 2.48 ps for multi-pulse measurement by using a 3.2-GHz radiofrequency cavity.We also theoretically and experimentally analyze the parameters influencing the electron pulse compression efficiency for single-and multi-pulse measurements by considering radiofrequency field time jitter,electron pulse time jitter and their relative time jitter.We suggest that increasing the electron energy or shortening the distance between the compression cavity and the streak cavity can further improve the electron pulse compression efficiency.These experimental and theoretical results are very helpful for designing the ultrafast electron diffraction experiment equipment and compressing the ultrafast electron pulse width in a future study.展开更多
BACKGROUND A large ganglionic cyst extending from the hip joint to the intrapelvic cavity through the sciatic notch is a rare space-occupying lesion associated with compressive lower-extremity neuropathy.A cyst in the...BACKGROUND A large ganglionic cyst extending from the hip joint to the intrapelvic cavity through the sciatic notch is a rare space-occupying lesion associated with compressive lower-extremity neuropathy.A cyst in the pelvic cavity compressing the intrapelvic-sciatic nerve is easily missed in the diagnostic process because it usually presents as atypical symptoms of an extraperitoneal-intrapelvic tumor.We present a case of a huge ganglionic cyst that was successfully excised laparoscopically and endoscopically by a gynecologist and an orthopedic surgeon.CASE SUMMARY A 52-year-old woman visited our hospital complaining of pain and numbness in her left buttock while sitting.The pain began 3 years ago and worsened,while the numbness in the left lower extremity lasted 1 mo.She was diagnosed and unsuccessfully treated at several tertiary referral centers many years ago.Magnetic resonance imaging revealed a suspected paralabral cyst(5 cm×5 cm×4.6 cm)in the left hip joint,extending to the pelvic cavity through the greater sciatic notch.The CA-125 and CA19-9 tumor marker levels were within normal limits.However,the cyst was compressing the sciatic nerve.Accordingly,endoscopic and laparoscopic neural decompression and mass excision were performed simultaneously.A laparoscopic examination revealed a tennis-ball-sized cyst filled with gelatinous liquid,stretching deep into the hip joint.An excisional biopsy performed in the pelvic cavity and deep gluteal space confirmed the accumulation of ganglionic cysts from the hip joint into the extrapelvic intraperitoneal cavity.CONCLUSION Intra-or extra-sciatic nerve-compressing lesion should be considered in cases of sitting pain radiating down the ipsilateral lower extremity.This large juxta-articular ganglionic cyst was successfully treated simultaneously using laparoscopy and arthroscopy.展开更多
Aiming at the characteristics of the seismic exploration signals, the paper studies the image coding technology, the coding standard and algorithm, brings forward a new scheme of admixing coding for seismic data compr...Aiming at the characteristics of the seismic exploration signals, the paper studies the image coding technology, the coding standard and algorithm, brings forward a new scheme of admixing coding for seismic data compression. Based on it, a set of seismic data compression software has been developed.展开更多
3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Des...3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems.展开更多
As a continuation of a recent linear analysis by Mao et al.(Acta Mech Sin,2010,26:355),in this paper we propose a general theoretical formulation for the compressing process in complex Newtonian fluid flows,which cove...As a continuation of a recent linear analysis by Mao et al.(Acta Mech Sin,2010,26:355),in this paper we propose a general theoretical formulation for the compressing process in complex Newtonian fluid flows,which covers gas dynamics,aeroacoustics,nonlinear thermoviscous acoustics,viscous shock layer,etc.,as its special branches.The principle on which our formulation is based is the maximally natural and dynamic Helmholtz decomposition of the Navier-Stokes equation,along with the kinematic Helmholtz decomposition of the velocity field.The central results are the new dilatation equation and velocity-potential equation,which are the counterparts of vorticity transport equation and vector stream-function equation for the shearing process,respectively.Various couplings of the compressing process with shearing and thermal processes,including its physical sources,are carefully identified.While the possible applications and influences of the new formulation are yet to be explored,our preliminary discussion on the pros and cons of previous formulations pertain to acoustic analogy and that on the process splitting and coupling in highly compressible turbulence indicates that at least the formulation can serve as a new frame of reference by which one may gain some additional insight and thereby develop new approaches to the multi-process complex flow problems.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
BACKGROUND Magnetic compression anastomosis(MCA)offers a simple and reliable technique for inducing anastomoses at any point along the digestive tract.Evidence regarding whether the design of the MCA device influences...BACKGROUND Magnetic compression anastomosis(MCA)offers a simple and reliable technique for inducing anastomoses at any point along the digestive tract.Evidence regarding whether the design of the MCA device influences the anastomosis effect is lacking.AIM To investigate any difference in the side-to-side colonic anastomosis effect achieved with cylindrical vs circular ring magnets.METHODS We designed cylindrical and circular ring magnets suitable for side-to-side colonic anastomosis in rats.Thirty Sprague-Dawley rats were randomly divided into a cylindrical group,circular ring group,and cylindrical–circular ring group(n=10/group).Side-to-side colonic anastomosis was completed by transanal insertion of the magnets without incision of the colon.Operation time,perioperative complications,and magnet discharge time were recorded.Rats were euthanized 4 weeks postoperatively,and anastomotic specimens were obtained.The burst pressure and anastomotic diameter were measured sequentially,and anastomosis formation was observed by naked eye.Histological results were observed by light microscopy.RESULTS In all 30 rats,side-to-side colonic anastomosis was completed,for an operation success rate of 100%.No postoperative complications of bleeding and intestinal obstruction occurred,and the postoperative survival rate were 100%.The operation time,magnet discharge time,anastomotic bursting pressure,and anastomotic diameter did not differ significantly among the three designs(P>0.05).Healing was similar across the groups,with gross specimens showing good anastomotic healing and good mucosal continuity observed on histological analysis.CONCLUSION This study found no significant difference in the establishment of rat side-to-side colonic anastomosis with the use of cylindrical vs circular ring magnets.展开更多
Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation proce...Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate.展开更多
Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of...Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.展开更多
This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curi...This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.展开更多
The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique natu...The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.展开更多
Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated...Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature.展开更多
基金financially supported by the Original Program of Chongqing Foundational and Frontier Research Plan(No.cstc2013jcyjA70015)the Science and Technology Research Program of Education Council of Chongqing(No.KJ080407)
文摘Microstructure and texture in 6016 aluminum alloy during hot compression were researched with a uni- axial compression experiment. Through the electron back- scattered diffraction (EBSD) and X-ray diffraction (XRD) analysis technology, it is shown that the subgrain nucle- ation and recrystallization occur in 6016 aluminum alloy during hot compressing, and strong rolling textures such as (110) fiber texture, Brass, S, and Goss form. With the deformation passes increasing, (110) fiber texture, Brass and S are enhanced. In the heat preservation stage after deformation, recrystallization continues until heat preser- vation for 60 s, and a duplex microstructure of deformation and recrystallization grains is built. At the beginning of heat preservation, recrystallization grains with the Goss texture and random orientation are formed in original grains with S or Brass texture, which makes the volume fraction of S and Brass texture decrease. Then, the complex grain growth process makes the volume fraction of Brass, S, and Goss texture increase, while that of random orien- tation decrease.
基金This work was supported by National Natural Science Foundation of China(Nos.61802030,61572184)the Science and Technology Projects of Hunan Province(No.2016JC2075)the International Cooperative Project for“Double First-Class”,CSUST(No.2018IC24).
文摘With the popularity of deep learning tools in image decomposition and natural language processing,how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem to be solved.These parameters are huge and can be as many as millions.At present,a feasible direction is to use the sparse representation technique to compress the parameter matrix to achieve the purpose of reducing parameters and reducing the storage pressure.These methods include matrix decomposition and tensor decomposition.To let vector take advance of the compressing performance of matrix decomposition and tensor decomposition,we use reshaping and unfolding to let vector be the input and output of Tensor-Factorized Neural Networks.We analyze how reshaping can get the best compress ratio.According to the relationship between the shape of tensor and the number of parameters,we get a lower bound of the number of parameters.We take some data sets to verify the lower bound.
基金supported by the National Basic Research Program of China(2009CB724100)
文摘Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.
文摘Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, which leads to data implosion and redundancy. To reduce traffic load of the network, a data compressing based target tracking protocol is proposed in this work. It first incorporates a clustering based data gather method to group sensor nodes into clusters. Then a novel threshold technique with bounded error is proposed to exploit the spatial correlation of sensed data and compress the data in the same cluster. Finally, the compact data presentations are transmitted to the base-station for targets localization. We evaluate our approach with a comprehensive set of simulations. It can be concluded that the proposed method yields excellent performance in energy savings and tracking quality.
基金Supported by the National Natural Science Foundation of China under Grant No 11464028the Science Foundation of Department of Education of Jiangxi Province under Grant No GJJ150025
文摘By means of density functional theory calculations, an orthogonal boron-carbon-nitrogen compound called (3,0)- BC2N is predicted, which can be obtained by transversely compressing (3,03 carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). Its structural stability, elastic properties, mechanical properties and electronic structure are systematically investigated. The results show that (3,0)-BU2N is a superhard material with a direct bandgap. However, its similar structures, (3,0)-C and (3,0)-BN are indirect semiconductors. Strikingly, (3,0)-C is harder than diamond. We also simulate the x-ray diffraction of (3,0)-BC2N to support future experimental investigations. In addition, our study shows that the transition from (3,03 CNTS and BNNTs to (3,0)-BC2N is irreversible.
基金the National Natural Science Foundation of China(No.51467002)Special Projects for Innovation-driven Development(No.2018AA03001Y).
文摘Traditional lightning protection measures can not solve the problem of superimposed lightning strikes.This paper presents a compressing arc extinguishing lightning protection device,which can solve the problem of superimposed lightning strikes.This device can extinguish the power frequency continuous current arc quickly in 1-2 ms.It is far less than the response time of relay protection,which can avoid lightning trips and improve the reliability of power supply.The computer simulation and engineering practice show that the compressing arc extinguishing device has good protection effect on superimposed lightning strikes.
基金support of National Science and Technology Major Project of China (No. JPPTKF2016)。
文摘Solving the shortest tool length quickly under a known tool trajectory in multi-axis machining of complex channel parts is an urgent problem in industrial production. To solve this problem, a novel and efficient method is proposed which is featured by extracting only a few necessary curves from the check surface instead of sampling the entire surface. By rotating and compressing the 3 D check surface relative to all tool postures, the boundaries of the area occupied by the 2 D compressed surfaces are the essential elements for determining the shortest tool length. A tracking-based numerical algorithm is introduced to efficiently solve the silhouette curves which are formed in compressing. To define the multi-taper shaped tool holding system(THS) which is commonly used in production, a characterization model for THS profile is established. A model for solving the shortest tool length is finally constructed based on the critical interference relationship between the THS profile and all compressed boundary curves. For acceleration, the boundary splines are segmented according to their knot vectors. Then a new concept called the axis-aligned tool length box(AATB) is introduced,which can provide a conservative range of tool length for a spline segment. By scanning the AATBs of all spline segments, the very few effective spline segments that may ultimately determine the shortest tool length are filtered out. This acceleration method makes the solution for the shortest tool length more focused and efficient. The results of experimental examples are also reported to validate the efficiency and accuracy of the proposed algorithm.
基金supported by the National Numerical Windtunnel Project, China
文摘The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and saving the structured grid are proposed.In the present method,the geometric coordinates of the six logical domains of one grid block is saved instead of all grid vertex coordinates to reduce the size of the structured grid file when the grid is compressed.And all grid vertex coordinates are recovered from the compressed data with the use of the transfinite interpolation algorithm when the grid is decompressed.Firstly,single-block grid cases with different edge vertexes are tested to investigate the compression effect.The test results show that a higher compression ratio will be obtained on a larger grid.Secondly,further theoretical analysis is carried out to investigate the effects of parameters on grid compression.The analysis on single-block grid compression shows that the compression ratio is proportionate to the cubic root of the number of total vertexes.The highest compression ratio of single-block grid is obtained when the numbers of vertexes in three logical directions are equal.The analysis on multi-block grid compression shows that a higher compression ratio will be obtained when a larger difference of total vertexes number exists among the grid blocks.Finally,multi-blockgrids of two industrial aircraft configurations are compressed to validate the method.The compression results demonstrate that the present method has an excellent ability on structured grid compression.For a million-vertex structured grid,more than 80 percent disk space can be saved after compression.
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.51132004 and 11474096)the Fund from the Science and Technology Commission of Shanghai Municipality,China(Gant No.14JC1401500)the NYU-ECNU Institute of Physics at NYU Shanghai,China
文摘An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale.The space charge forces in a multi-electron bunch will greatly broaden the electron pulse width,and therefore limit the temporal resolution of the high brightness electron pulse.Here in this work,we design an ultrafast electron diffraction system,and utilize a radio frequency cavity to realize the ultrafast electron pulse compression.We experimentally demonstrate that the stretched electron pulse width of14.98 ps with an electron energy of 40 keV and the electron number of 1.0 ×10;can be maximally compressed to about0.61 ps for single-pulse measurement and 2.48 ps for multi-pulse measurement by using a 3.2-GHz radiofrequency cavity.We also theoretically and experimentally analyze the parameters influencing the electron pulse compression efficiency for single-and multi-pulse measurements by considering radiofrequency field time jitter,electron pulse time jitter and their relative time jitter.We suggest that increasing the electron energy or shortening the distance between the compression cavity and the streak cavity can further improve the electron pulse compression efficiency.These experimental and theoretical results are very helpful for designing the ultrafast electron diffraction experiment equipment and compressing the ultrafast electron pulse width in a future study.
文摘BACKGROUND A large ganglionic cyst extending from the hip joint to the intrapelvic cavity through the sciatic notch is a rare space-occupying lesion associated with compressive lower-extremity neuropathy.A cyst in the pelvic cavity compressing the intrapelvic-sciatic nerve is easily missed in the diagnostic process because it usually presents as atypical symptoms of an extraperitoneal-intrapelvic tumor.We present a case of a huge ganglionic cyst that was successfully excised laparoscopically and endoscopically by a gynecologist and an orthopedic surgeon.CASE SUMMARY A 52-year-old woman visited our hospital complaining of pain and numbness in her left buttock while sitting.The pain began 3 years ago and worsened,while the numbness in the left lower extremity lasted 1 mo.She was diagnosed and unsuccessfully treated at several tertiary referral centers many years ago.Magnetic resonance imaging revealed a suspected paralabral cyst(5 cm×5 cm×4.6 cm)in the left hip joint,extending to the pelvic cavity through the greater sciatic notch.The CA-125 and CA19-9 tumor marker levels were within normal limits.However,the cyst was compressing the sciatic nerve.Accordingly,endoscopic and laparoscopic neural decompression and mass excision were performed simultaneously.A laparoscopic examination revealed a tennis-ball-sized cyst filled with gelatinous liquid,stretching deep into the hip joint.An excisional biopsy performed in the pelvic cavity and deep gluteal space confirmed the accumulation of ganglionic cysts from the hip joint into the extrapelvic intraperitoneal cavity.CONCLUSION Intra-or extra-sciatic nerve-compressing lesion should be considered in cases of sitting pain radiating down the ipsilateral lower extremity.This large juxta-articular ganglionic cyst was successfully treated simultaneously using laparoscopy and arthroscopy.
文摘Aiming at the characteristics of the seismic exploration signals, the paper studies the image coding technology, the coding standard and algorithm, brings forward a new scheme of admixing coding for seismic data compression. Based on it, a set of seismic data compression software has been developed.
文摘3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems.
基金supported by the Ministry of Science and Technology of China's Turbulence Program (Grant No.2009CB724101)the National Basic Research Program of China (Grant No.2007CB714600)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.10921202)
文摘As a continuation of a recent linear analysis by Mao et al.(Acta Mech Sin,2010,26:355),in this paper we propose a general theoretical formulation for the compressing process in complex Newtonian fluid flows,which covers gas dynamics,aeroacoustics,nonlinear thermoviscous acoustics,viscous shock layer,etc.,as its special branches.The principle on which our formulation is based is the maximally natural and dynamic Helmholtz decomposition of the Navier-Stokes equation,along with the kinematic Helmholtz decomposition of the velocity field.The central results are the new dilatation equation and velocity-potential equation,which are the counterparts of vorticity transport equation and vector stream-function equation for the shearing process,respectively.Various couplings of the compressing process with shearing and thermal processes,including its physical sources,are carefully identified.While the possible applications and influences of the new formulation are yet to be explored,our preliminary discussion on the pros and cons of previous formulations pertain to acoustic analogy and that on the process splitting and coupling in highly compressible turbulence indicates that at least the formulation can serve as a new frame of reference by which one may gain some additional insight and thereby develop new approaches to the multi-process complex flow problems.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金Supported by the Key Research and Development Program of Shaanxi,No.2024SF-YBXM-447the Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07the Fundamental Research Funds for the Central Universities,No.xzy022023068.
文摘BACKGROUND Magnetic compression anastomosis(MCA)offers a simple and reliable technique for inducing anastomoses at any point along the digestive tract.Evidence regarding whether the design of the MCA device influences the anastomosis effect is lacking.AIM To investigate any difference in the side-to-side colonic anastomosis effect achieved with cylindrical vs circular ring magnets.METHODS We designed cylindrical and circular ring magnets suitable for side-to-side colonic anastomosis in rats.Thirty Sprague-Dawley rats were randomly divided into a cylindrical group,circular ring group,and cylindrical–circular ring group(n=10/group).Side-to-side colonic anastomosis was completed by transanal insertion of the magnets without incision of the colon.Operation time,perioperative complications,and magnet discharge time were recorded.Rats were euthanized 4 weeks postoperatively,and anastomotic specimens were obtained.The burst pressure and anastomotic diameter were measured sequentially,and anastomosis formation was observed by naked eye.Histological results were observed by light microscopy.RESULTS In all 30 rats,side-to-side colonic anastomosis was completed,for an operation success rate of 100%.No postoperative complications of bleeding and intestinal obstruction occurred,and the postoperative survival rate were 100%.The operation time,magnet discharge time,anastomotic bursting pressure,and anastomotic diameter did not differ significantly among the three designs(P>0.05).Healing was similar across the groups,with gross specimens showing good anastomotic healing and good mucosal continuity observed on histological analysis.CONCLUSION This study found no significant difference in the establishment of rat side-to-side colonic anastomosis with the use of cylindrical vs circular ring magnets.
基金supported by the Nation Key Research and Development Program of China(No.2021YFB3701100).
文摘Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate.
基金supported by the National Natural Science Foundation of China(12072136).
文摘Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.
基金Sponsored by Jilin Provincial Department of Education Scientific Research Project(Grant Nos.JJKH20190875KJ,JJKH20230348KJ).
文摘This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.
基金Project(42202318)supported by the National Natural Science Foundation of ChinaProject(252300421199)supported by the Natural Science Foundation of Henan Province,ChinaProject(2024JJ6219)supported by the Hunan Provincial Natural Science Foundation of China。
文摘The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.
基金support from Interdisciplinary Research Project for Young Teachers of USTB Fundamental Research Funds for the Central Universities(Grant no.FRF-IDRY-23-030).
文摘Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature.