Skeletal editing has emerged as a powerful tool in organic chemistry,enabling the simplification of synthetic routes to complex molecules[1].Indoles,electron-rich nitrogen-containing building blocks,represent privileg...Skeletal editing has emerged as a powerful tool in organic chemistry,enabling the simplification of synthetic routes to complex molecules[1].Indoles,electron-rich nitrogen-containing building blocks,represent privileged scaffolds prevalent in pharmaceuticals,natural products,and bioactive compounds.The application of skeletal editing strategies to modify such structures is highly valuable and in growing demand.Leveraging the electronrich nature of indoles at C2 and C3,single-carbon atom insertion using cationic carbyne equivalents offers an efficient approach for indole ring expansion to quinoline(Scheme 1a).However,existing methods predominantly rely on halocarbene precursors,which restricts the functional groups of ring-expanded products to halogen[2],alkyl,aryl,heteroaryl and ester moieties[3].This limitation hinders their utility in late-stage skeletal modifications of complex targets.展开更多
文摘Skeletal editing has emerged as a powerful tool in organic chemistry,enabling the simplification of synthetic routes to complex molecules[1].Indoles,electron-rich nitrogen-containing building blocks,represent privileged scaffolds prevalent in pharmaceuticals,natural products,and bioactive compounds.The application of skeletal editing strategies to modify such structures is highly valuable and in growing demand.Leveraging the electronrich nature of indoles at C2 and C3,single-carbon atom insertion using cationic carbyne equivalents offers an efficient approach for indole ring expansion to quinoline(Scheme 1a).However,existing methods predominantly rely on halocarbene precursors,which restricts the functional groups of ring-expanded products to halogen[2],alkyl,aryl,heteroaryl and ester moieties[3].This limitation hinders their utility in late-stage skeletal modifications of complex targets.