Cooking process can produce abundant volatile organic compounds(VOCs),which are harmful to environment and human health.Therefore,we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines ha...Cooking process can produce abundant volatile organic compounds(VOCs),which are harmful to environment and human health.Therefore,we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform,involving concentration characteristics,ozone formation potential(OFP)and purification efficiency assessments.VOCs emissions varied from 1828.5 to 14,355.1μg/m^(3),with the maximumand minimumvalues fromBarbecue and Family cuisine,respectively.Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine(64.1%),Family cuisine(66.3%),Shandong cuisine(69.1%)and Cantonese cuisine(69.8%),with the dominant VOCs species of ethanol,isobutane and n-butane.In comparison,alcohols(79.5%)were abundant for Huaiyang cuisine,while alkanes(19.7%),alkenes(35.9%)and haloalkanes(22.9%)accounted for higher proportions from Barbecue.Specially,carbon tetrachloride,n-hexylene and 1-butene were the most abundant VOCs species for Barbecue,ranging from 8.8%to 14.6%.The highest OFP occurred in Barbecue.The sensitive species of OFP for Huaiyang cuisine were alcohols,while other cuisines were alkenes.Purification efficiency assessments shed light on the removal differences of individual and synergistic control technologies.VOCs emissions exhibited a strong dependence on the photocatalytic oxidation,with the removal efficiencies of 29.0%–54.4%.However,the high voltage electrostatic,wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction,meanwhile collaborative control technologies could not significantly improve the removal efficiency.Our results identifiedmore effective control technologies,which were conductive to alleviating air pollution from cooking emissions.展开更多
Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techni...Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.展开更多
Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),...Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),steam explosion(SE),and deep frying(DF)on bioactive components,phenolic compounds,and antioxidant activities of Qingke compared with the effects of traditional roast(TR).Results showed that the soluble dietary fiber,beta-glucan and water-extractable pentosans of Qingke in dry heat processes of TR,SE,MB and FB had a higher content compared with other thermal methods and had a better antioxidant activity of hydroxyl radical scavenging and a better reduction capacity,while those in wet heat processes of BO and ST had a better antioxidant activity of ABTS radical scavenging and a better Fe^(2+) chelating ability.DF-and SE-Qingke had a higher content of tocopherol,phenolic,and flavonoid.Overall,6 free phenolic compounds and 12 bound phenolic compounds of Qingke were identified,and free phenolic compounds suffered more damage during thermal processing.Principal component analysis showed that SE had more advantages in retaining and improving the main biological active ingredients of Qingke,and it may be the best method for treating Qingke.展开更多
Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,s...Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.展开更多
In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based var...In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based varnish to simulate VOCs,respectively.By measuring the compounds and contents of the mixture gas before/after the microwave plasma process,we have calculated the treatment efficiency of AMPT.The experimental results show that the treatment efficiency of AMPT for toluene with a concentration of 17.32×10^(4) ppm is up to 60 g/kWh with the removal rate of 86%.For the volatile compounds of water-based varnish,the removal efficiency is up to 97.99%.We have demonstrated the higher potential for VOCs removal of the AMPT process.展开更多
Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the at...Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.展开更多
基金supported by the Open Research Fund Program of State Environmental Protection Key Laboratory of Food Chain Pollution Control(No.FC2021YB03)the Research Foundation for Youth Scholars of Beijing Technology and Business University(No.QNJJ2021-32).
文摘Cooking process can produce abundant volatile organic compounds(VOCs),which are harmful to environment and human health.Therefore,we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform,involving concentration characteristics,ozone formation potential(OFP)and purification efficiency assessments.VOCs emissions varied from 1828.5 to 14,355.1μg/m^(3),with the maximumand minimumvalues fromBarbecue and Family cuisine,respectively.Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine(64.1%),Family cuisine(66.3%),Shandong cuisine(69.1%)and Cantonese cuisine(69.8%),with the dominant VOCs species of ethanol,isobutane and n-butane.In comparison,alcohols(79.5%)were abundant for Huaiyang cuisine,while alkanes(19.7%),alkenes(35.9%)and haloalkanes(22.9%)accounted for higher proportions from Barbecue.Specially,carbon tetrachloride,n-hexylene and 1-butene were the most abundant VOCs species for Barbecue,ranging from 8.8%to 14.6%.The highest OFP occurred in Barbecue.The sensitive species of OFP for Huaiyang cuisine were alcohols,while other cuisines were alkenes.Purification efficiency assessments shed light on the removal differences of individual and synergistic control technologies.VOCs emissions exhibited a strong dependence on the photocatalytic oxidation,with the removal efficiencies of 29.0%–54.4%.However,the high voltage electrostatic,wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction,meanwhile collaborative control technologies could not significantly improve the removal efficiency.Our results identifiedmore effective control technologies,which were conductive to alleviating air pollution from cooking emissions.
基金TheNationalNaturalScienceFoundationofChina (No .2 9836 16 0 )
文摘Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.
基金financially supported by the 2018 annual three gorges follow-up research project of the three gorges office of the State Council (YYNY-2017-01)
文摘Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),steam explosion(SE),and deep frying(DF)on bioactive components,phenolic compounds,and antioxidant activities of Qingke compared with the effects of traditional roast(TR).Results showed that the soluble dietary fiber,beta-glucan and water-extractable pentosans of Qingke in dry heat processes of TR,SE,MB and FB had a higher content compared with other thermal methods and had a better antioxidant activity of hydroxyl radical scavenging and a better reduction capacity,while those in wet heat processes of BO and ST had a better antioxidant activity of ABTS radical scavenging and a better Fe^(2+) chelating ability.DF-and SE-Qingke had a higher content of tocopherol,phenolic,and flavonoid.Overall,6 free phenolic compounds and 12 bound phenolic compounds of Qingke were identified,and free phenolic compounds suffered more damage during thermal processing.Principal component analysis showed that SE had more advantages in retaining and improving the main biological active ingredients of Qingke,and it may be the best method for treating Qingke.
基金The Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2016-OCRI)Wuhan Scientific and Technical Payoffs Transformation Project(2019030703011505)Earmarked Fund for China Agriculture Research System(CARS-14).
文摘Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFF0102100the Pre-Research Project of Civil Aerospace Technology of China under Grant No.D040109.
文摘In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based varnish to simulate VOCs,respectively.By measuring the compounds and contents of the mixture gas before/after the microwave plasma process,we have calculated the treatment efficiency of AMPT.The experimental results show that the treatment efficiency of AMPT for toluene with a concentration of 17.32×10^(4) ppm is up to 60 g/kWh with the removal rate of 86%.For the volatile compounds of water-based varnish,the removal efficiency is up to 97.99%.We have demonstrated the higher potential for VOCs removal of the AMPT process.
文摘Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.