The exponential growth of antibiotic-resistant bacteria and antibiotic-resistant genes(ARGs)in soil-crop systems in recent years has posed a great challenge to ecological security and human health.While many studies h...The exponential growth of antibiotic-resistant bacteria and antibiotic-resistant genes(ARGs)in soil-crop systems in recent years has posed a great challenge to ecological security and human health.While many studies have documented the residues of ARGs in soils and crops,but little is known about who drives the proliferation of ARGs in farming systems and what their underlying mechanisms are.Herein,we explored the occurrence and proliferating behavior of ARGs in soil-crop environments in terms of root secretions and plant volatiles.This review highlighted that plant root secretions and volatile organic compounds(VOCs)served as key substances mediating the development of antibiotic resistance in the soil-crop system.Still,there is controversy here as to plant root secretions promote the ARGs proliferation or inhibit.Some studies indicated that root secretions can suppress the colonization of ARGs,mainly attributed by the production of bluntedmetabolic enzymes and blocking of cellular exocytosis systems.Whereas the others have evidenced that root secretions can promote ARGs proliferation,primarily by altering the structure of microbial communities to influence species interactions and thus indirectly affect the proliferation of ARGs.Also,VOCs can act as molecular signals to convey antibiotic resistance information to their neighbors,which in turn drive the up-regulation of ARGs expression.Even so,the mechanism by which VOC-driven antibiotic resistance acquisition and proliferation need to be further probed.Overall,this review contributed to the development of products and technologies to impede the ARGs proliferation in agricultural environment.展开更多
Achieving room-temperature superconductivity has been an enduring scientific quest,while hydrogen-rich compounds have emerged as highly promising candidates.Here,we systematically investigated the thermodynamic stabil...Achieving room-temperature superconductivity has been an enduring scientific quest,while hydrogen-rich compounds have emerged as highly promising candidates.Here,we systematically investigated the thermodynamic stability,crystal structure,electronic properties,and superconductivity within the ternary Y-Hf-H system under high pressure.Several distinct hydrides have been revealed,in which the hydrogen atoms are present in various hydrogenic motifs.A15-type hydride P_(m)3-YHfH_(6)with isolated H−is predicted to be dynamically stabilized down to 10GPa.The H atoms form pentagonal graphene-like layered-H10 anions in the Hf plane of P6-YHfH_(19),with aT_(c)of 95K at 100GPa.There are H cages in C_(mmm)-Y_(3)HfH_(24),and attributed to the robust electron–phonon coupling and high electronic density of states of hydrogen at the Fermi level,it demonstrates near-room temperature superconductivity with a T_(c)of 275K at 250GPa.Our work makes contributions to the understanding of the fundamental properties of ternary hydrides under high pressure and provides essential references for further research in this field.展开更多
In this study,the mechanism of the reduction-diffusion reaction in a Sm-Fe binary system at low temperature was studied to investigate the possibility of synthesis of a Fe-rich TbCu_(7)-type SmFe_(x)(x>9)by the low...In this study,the mechanism of the reduction-diffusion reaction in a Sm-Fe binary system at low temperature was studied to investigate the possibility of synthesis of a Fe-rich TbCu_(7)-type SmFe_(x)(x>9)by the low-temperature diffusion-reduction(LTRD)process using LiCl-KCl eutectic molten salts.Firstly,the Sm-Fe phase transformation depending on the Sm-Fe composition,the LTRD temperature,and time was investigated,and it is found that the obtained metastable phase is only TbCu_(7)-type SmFe_(~8.5),which is not a Fe-rich phase.This Fe content does not change even after an expended LTRD process,and the metastable TbCu_(7)-type SmFe_(~8.5)tends to transform to the stable Sm_(2)Fe_(17)phase.In addition,it is found that the Sm-Fe phase starts to synthesize from the Sm-rich phase in the order of SmFe_(2),SmFe_(3),and SmFe_(8.5)as the LTRD temperature increases(when the time was 10 h)or the LTRD time increases(when the temperature was 550℃).Core-shell-like particles are observed in the case of a short LTRD time,and the core and the shell are Fe and the Sm-rich Sm-Fe phase,respectively,indicating that the Sm-rich phase begins to produce on the surface of the Fe particles.It is difficult to synthesize a Fe-rich TbCu_(7)-type SmFe_(x)(x>9)phase with the Sm-Fe binary system,suggesting that a different approach,such as addition of other elements,will be necessary.展开更多
Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulk...Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulky structure.In contrast,biological eyes possess a simple and compact structure due to their curved imaging structure that can directly match with the curved focal plane.Inspired by the structures and functions of biological eyes,curved vision systems not only improve the image quality,but also offer a variety of advanced functions.Here,we review the recent advances in bioinspired vision systems with curved imaging structures.Specifically,we focus on their applications in implementing different functions of biological eyes,as well as the emerging curved neuromorphic imaging systems that incorporate bioinspired optical and neuromorphic processing technologies.In addition,the challenges and opportunities of bioinspired curved imaging systems are also discussed.展开更多
Background:The field of personalized medicine has gained increasing attention in cancer care,with the aim of tailoring treatment strategies to individual patients for improved outcomes.Herbal medicine,with its long-st...Background:The field of personalized medicine has gained increasing attention in cancer care,with the aim of tailoring treatment strategies to individual patients for improved outcomes.Herbal medicine,with its long-standing historical use and extensive bioactive compounds,offers a rich source of potential treatments for various diseases,including cancer.Objective:To provide an overview of the current knowledge and evidence associated with incorporating herbal compounds into precision medicine strategies for cancer diseases.Additionally,to explore the general characteristics of the studies included in the analysis,focusing on their key features and trends.Search strategy:A comprehensive literature search was conducted from multiple online databases,including Pub Med,Scopus,Web of Science,and CINAHL-EBSCO.The search strategy was designed to identify studies related to personalized cancer medicine and herbal interventions.Inclusion criteria:Publications pertaining to cancer research conducted through in vitro,in vivo,and clinical studies,employing natural products were included in this review.Data extraction and analysis:Two review authors independently applied inclusion and inclusion criteria,data extraction,and assessments of methodological quality.The quality assessment and biases of the studies were evaluated based on modified Jadad scales.A detailed quantitative summary of the included studies is presented,providing a comprehensive description of their key features and findings.Results:A total of 121 studies were included in this review for analysis.Some of them were considered as comprehensive experimental investigations both in vitro and in vivo.The majority(n=85)of the studies included in this review were conducted in vitro,with 44 of them specifically investigating the effects of herbal medicine on animal models.Additionally,7 articles with a combined sample size of 31,271 patients,examined the impact of herbal medicine in clinical settings.Conclusion:Personalized medication can optimize the use of herbal medicine in cancer treatment by considering individual patient factors such as genetics,medical history,and other treatments.Additionally,active phytochemicals found in herbs have shown potential for inhibiting cancer cell growth and inducing apoptosis,making them a promising area of research in preclinical and clinical investigations.展开更多
Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhi...Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.展开更多
Objective To summarize the uric acid-lowering effects and mechanisms of Chinese medicines with medicine-food homology,aiming to provide novel perspectives for the devel-opment of new anti-hyperuricemia(HUA)drugs.Metho...Objective To summarize the uric acid-lowering effects and mechanisms of Chinese medicines with medicine-food homology,aiming to provide novel perspectives for the devel-opment of new anti-hyperuricemia(HUA)drugs.Methods Papers on the research of HUA prevention and treatment with medicine-food ho-mology from December 15,2002 to August 10,2024 were screened and collected through Chi-na National Knowledge Infrastructure(CNKI),PubMed,ScienceDirect,and Google Scholar.Subsequently,the impact of these medications and their extracts,as well as the active com-pounds on HUA were assessed.Results A total of 148 relevant papers were collected,including 43 kinds of Chinese medicines and 61 active compounds,all of which have anti-HUA activity.Among them,41 kinds of Chinese medicines could inhibit the activity of xanthine oxidase,thus leading to the inhibition of uric acid production;and 22 kinds of Chinese medicines could facilitate uric acid excretion,while 15 kinds of Chinese medicines could reduce the inflammation levels in the body and promoting renal protection.Notably,polyphenols and flavonoids are the key active components for the uric acid-lowering effects.Conclusion This study systematically summarized and analyzed the uric acid-lowering ef-fects and mechanisms of Chinese medicines with medicine-food homology,laying a founda-tion for their development as HUA agents.展开更多
A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β(Aβ)in ex vivo and in vivo Alzheimer's disease(AD)models,suggesting a possible use in th...A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β(Aβ)in ex vivo and in vivo Alzheimer's disease(AD)models,suggesting a possible use in the treatment of this neurodegenerative disorder.However,several compounds,administered parenterally and orally,are unable to reach the brain due to the presence of the blood-brain barrier(BBB)which prevents the passage of external substances,such as proteins,peptides,or phytocompounds,representing a limit to the development of treatment for neurodegenerative diseases,such as AD.The combination of nano vesicular systems,as colloidal systems,and nose to brain(NtB)delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases,including the use of natural molecules in combination therapy for AD.Herein,we will provide an updated overview,examining the literature of the last 20 years and using specific keywords that provide evidence on natural products with the ability to restore synaptic plasticity alterations in AD models,and the possible application using safe and non-invasive strategies focusing on nano vesicular systems for NtB delivery.展开更多
Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics(RG)system in the past.Since 2017,multiple plasmid-based RG systems for simian,hu...Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics(RG)system in the past.Since 2017,multiple plasmid-based RG systems for simian,human,and murine-like rotaviruses have been established.However,none of the described methods have supported the recovery of bovine rotaviruses(BRVs).Here,we established an optimized plasmid-based RG system for BRV culture-adapted strain(BRV G10P[15]BLR)and clinical isolates(BRV G6P[1]C73,G10P[11]HM26)based on a BHK-T7 cell clone stably expressing T7 polymerase.Furthermore,using this optimized RG system,we successfully rescued the reporter virus BRV rC73/Zs,rHM26/Zs and rBLR/Zs,harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3(NSP3)fused to ZsGreen,a 232-amino acid green fluorescent protein.Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging,while rHM26/Zs can be stabilized only up to the third generation,indicating that the BRV segment composition may influence the viral fitness.In addition,we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus.In summary,this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.展开更多
Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compou...Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compounds hold potential as a natural antidiabetic intervention that can be used to combat this global public health problem. Bioactive compounds found in this plant constitute promising interventions for combating obesity which is a major risk factor for the development of type 2 diabetes. These phytocompounds can work independently or synergistically to modulate appetite, lipase activity, adipogenesis and adipocyte apoptosis. However, the efficacy, mode of action and scope of management of diabetes by these compounds remains elusive. The current review aims to summarize data on efficacy in the management of diabetes, an antidiabetic candidate polyacetylenic compound and possible biological activities as an antidiabetic agent from the available literature. Much emphasis has been directed to cytopiloyne as a representative of polyacetylenic compounds extracted from Bidens pilosa and its activity on diabetic animal models. The majority of the studies conducted on animal models described antidiabetic mechanisms that range from hypoglycemic to secretagogue activity of cytopiloyne in a dose-dependent manner. A clinical trial pilot indicated improved glycemic control of Bidens pilosa formulation among diabetic patients in the study. Bidens pilosa and its compounds are highly potent antidiabetic agent(s) that should be graduated to an intervention for management of diabetes through pre-clinical and clinical trials to elucidate its efficacy and safety.展开更多
The phase equilibria and compositions in Mg-rich comer at 300℃ were determined in the Mg-Zn-A1 ternary system through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy ...The phase equilibria and compositions in Mg-rich comer at 300℃ were determined in the Mg-Zn-A1 ternary system through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) assisted with energy dispersive spectroscopy of X-ray (EDS). The results show that there exist three three-phase regions consisted of a-Mg+Mg17A112(7)+A15Mg11Zn4(φ), a-Mg+Mga2(Al, Zn)49(r)+A15MgllZn4(φ) and a-Mg+MgZn+Mg32(A1, Zn)49(r), respectively. The intermetallic compounds in equilibrium with a-Mg phase all have large composition ranges, not appear to be linear. At the same time, both zinc and aluminum are soluble in the a-Mg solid solution, with which the compounds are in equilibrium.展开更多
The phase equilibria in Co-rich region of Co-Ti-Ta system were studied.The microstructure and XRD analysis together with EDS determination show that L12 type Co3Ti phase and Laves_C36_Co3Ta phase get equilibrium with ...The phase equilibria in Co-rich region of Co-Ti-Ta system were studied.The microstructure and XRD analysis together with EDS determination show that L12 type Co3Ti phase and Laves_C36_Co3Ta phase get equilibrium with α-Co phase from 1 000 to 1 200 ℃.The Co3Ti phase possesses a solubility of Ta higher than 10%,and the addition of Ta stabilizes the Co3Ti phase.The isothermal sections of the Co-Ti-Ta system in the Co-rich region at 1 000,1 100 and 1 200 ℃ were constructed according to the result.展开更多
Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
The phase equilibria and compositions at the Mg-rich corner of the Mg?Zn?Al ternary system at 335 °C were systemically investigated through the equilibrated alloy method by using X-ray diffraction (XRD) and scann...The phase equilibria and compositions at the Mg-rich corner of the Mg?Zn?Al ternary system at 335 °C were systemically investigated through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) assisted with energy dispersive spectroscopy of X-ray (EDS). It is experimentally testified that theα-Mg solid solution is not in equilibrium with the Mg32(Al, Zn)49 (τ) ternary intermetallic compound orq quasicrystalline phase, but only in equilibrium with one ternary intermetallic compound Al5Mg11Zn4 (φ). The whole composition range of theφ phase was also obtained at 335 °C, i.e., 52.5%?56.4% Mg, 13.6%?24.0% Al, 19.6%?33.9% Zn (mole fraction). The solubility of Al in the MgZn phase is remarkably more than that in the Mg7Zn3 phase, and the maximum is about 8.6% Al. Aluminum and zinc are simultaneously soluble in theα-Mg solid solution.展开更多
This paper analyzes the compound attractor structure of a new three-dimensional autonomous chaotic system. First, it is found that there exist five equilibria in the chaotic system, and the stabilities of these equili...This paper analyzes the compound attractor structure of a new three-dimensional autonomous chaotic system. First, it is found that there exist five equilibria in the chaotic system, and the stabilities of these equilibria are discussed under a constant scalar control input parameter m. Secondly, the trajectories of the attractors on a y-z plane are examined, the reasons why these trajectories can exist or disappear are also described. Finally, the forming procedure of the different scrolls chaotic attractor is explored by computer simulations when the parameter m is varied. It is shown that the new chaotic attractor has a compound structure, it can evolve to other three-dimensional autonomous chaotic systems. The results of theoretical analysis and simulation are helpful for better understanding of other similar chaotic systems.展开更多
[Objective]Preservation and waterproof treatment are two crucial parts in wood protection, which can not only extend the service time, but also expand the application range of wood products. [Method] This work combine...[Objective]Preservation and waterproof treatment are two crucial parts in wood protection, which can not only extend the service time, but also expand the application range of wood products. [Method] This work combined CA with paraffin wax emulsion to treat wood samples, and basic properties of the compound system, such as stability (storage stability and centrifugal stability), particle size and pH val-ue, and water repel ency (water absorption, shrinkage and swel ing) of treated sam-ples were investigated. [Result and Conclusion] 1) the compound systems of CA and paraffin latex had a favorable miscibility and stability; 2) compared with untreated wood, CA-treated samples showed poor water repel ing properties, whereas samples treated with the compound systems indicated an obvious reduction in water absorp-tion, and the shrinkage and swel ing of them were improved as wel .展开更多
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b...Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.展开更多
基金supported by the Youth innovation Program of Chinese Academy of Agricultural Sciences(No.Y2023QC32)the foundation of Tianjin Natural Science Foundation(No.22JCQNJC01460)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(Agro-Environmental Protection Institute,Ministry of Agricultural and Rural Affairs)and the Youth Talent Project of Agro-Environmental Protection Institute,Ministry of Agricultural and Rural Affairs(Xu Yan).
文摘The exponential growth of antibiotic-resistant bacteria and antibiotic-resistant genes(ARGs)in soil-crop systems in recent years has posed a great challenge to ecological security and human health.While many studies have documented the residues of ARGs in soils and crops,but little is known about who drives the proliferation of ARGs in farming systems and what their underlying mechanisms are.Herein,we explored the occurrence and proliferating behavior of ARGs in soil-crop environments in terms of root secretions and plant volatiles.This review highlighted that plant root secretions and volatile organic compounds(VOCs)served as key substances mediating the development of antibiotic resistance in the soil-crop system.Still,there is controversy here as to plant root secretions promote the ARGs proliferation or inhibit.Some studies indicated that root secretions can suppress the colonization of ARGs,mainly attributed by the production of bluntedmetabolic enzymes and blocking of cellular exocytosis systems.Whereas the others have evidenced that root secretions can promote ARGs proliferation,primarily by altering the structure of microbial communities to influence species interactions and thus indirectly affect the proliferation of ARGs.Also,VOCs can act as molecular signals to convey antibiotic resistance information to their neighbors,which in turn drive the up-regulation of ARGs expression.Even so,the mechanism by which VOC-driven antibiotic resistance acquisition and proliferation need to be further probed.Overall,this review contributed to the development of products and technologies to impede the ARGs proliferation in agricultural environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072188,12122405,and 12274169)Program for Science and Technology Innovation Team in Zhejiang Province,China(Grant No.2021R01004)+2 种基金Natural Science Foundation of Zhejiang Province,China(Grant No.LQ24A040001)the Natural Science Foundation of Ningbo City,China(Grant No.2024J200)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.SJLY2023003)。
文摘Achieving room-temperature superconductivity has been an enduring scientific quest,while hydrogen-rich compounds have emerged as highly promising candidates.Here,we systematically investigated the thermodynamic stability,crystal structure,electronic properties,and superconductivity within the ternary Y-Hf-H system under high pressure.Several distinct hydrides have been revealed,in which the hydrogen atoms are present in various hydrogenic motifs.A15-type hydride P_(m)3-YHfH_(6)with isolated H−is predicted to be dynamically stabilized down to 10GPa.The H atoms form pentagonal graphene-like layered-H10 anions in the Hf plane of P6-YHfH_(19),with aT_(c)of 95K at 100GPa.There are H cages in C_(mmm)-Y_(3)HfH_(24),and attributed to the robust electron–phonon coupling and high electronic density of states of hydrogen at the Fermi level,it demonstrates near-room temperature superconductivity with a T_(c)of 275K at 250GPa.Our work makes contributions to the understanding of the fundamental properties of ternary hydrides under high pressure and provides essential references for further research in this field.
文摘In this study,the mechanism of the reduction-diffusion reaction in a Sm-Fe binary system at low temperature was studied to investigate the possibility of synthesis of a Fe-rich TbCu_(7)-type SmFe_(x)(x>9)by the low-temperature diffusion-reduction(LTRD)process using LiCl-KCl eutectic molten salts.Firstly,the Sm-Fe phase transformation depending on the Sm-Fe composition,the LTRD temperature,and time was investigated,and it is found that the obtained metastable phase is only TbCu_(7)-type SmFe_(~8.5),which is not a Fe-rich phase.This Fe content does not change even after an expended LTRD process,and the metastable TbCu_(7)-type SmFe_(~8.5)tends to transform to the stable Sm_(2)Fe_(17)phase.In addition,it is found that the Sm-Fe phase starts to synthesize from the Sm-rich phase in the order of SmFe_(2),SmFe_(3),and SmFe_(8.5)as the LTRD temperature increases(when the time was 10 h)or the LTRD time increases(when the temperature was 550℃).Core-shell-like particles are observed in the case of a short LTRD time,and the core and the shell are Fe and the Sm-rich Sm-Fe phase,respectively,indicating that the Sm-rich phase begins to produce on the surface of the Fe particles.It is difficult to synthesize a Fe-rich TbCu_(7)-type SmFe_(x)(x>9)phase with the Sm-Fe binary system,suggesting that a different approach,such as addition of other elements,will be necessary.
基金financially supported by the National Natural Science Foundation of China(Nos.52125205,U20A20166,61805015 and 61804011,52102184,52202181)the National key R&D program of China(Nos.2021YFB3200302 and 2021YFB3200304)the Fundamental Research Funds for the Central Universities。
文摘Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulky structure.In contrast,biological eyes possess a simple and compact structure due to their curved imaging structure that can directly match with the curved focal plane.Inspired by the structures and functions of biological eyes,curved vision systems not only improve the image quality,but also offer a variety of advanced functions.Here,we review the recent advances in bioinspired vision systems with curved imaging structures.Specifically,we focus on their applications in implementing different functions of biological eyes,as well as the emerging curved neuromorphic imaging systems that incorporate bioinspired optical and neuromorphic processing technologies.In addition,the challenges and opportunities of bioinspired curved imaging systems are also discussed.
文摘Background:The field of personalized medicine has gained increasing attention in cancer care,with the aim of tailoring treatment strategies to individual patients for improved outcomes.Herbal medicine,with its long-standing historical use and extensive bioactive compounds,offers a rich source of potential treatments for various diseases,including cancer.Objective:To provide an overview of the current knowledge and evidence associated with incorporating herbal compounds into precision medicine strategies for cancer diseases.Additionally,to explore the general characteristics of the studies included in the analysis,focusing on their key features and trends.Search strategy:A comprehensive literature search was conducted from multiple online databases,including Pub Med,Scopus,Web of Science,and CINAHL-EBSCO.The search strategy was designed to identify studies related to personalized cancer medicine and herbal interventions.Inclusion criteria:Publications pertaining to cancer research conducted through in vitro,in vivo,and clinical studies,employing natural products were included in this review.Data extraction and analysis:Two review authors independently applied inclusion and inclusion criteria,data extraction,and assessments of methodological quality.The quality assessment and biases of the studies were evaluated based on modified Jadad scales.A detailed quantitative summary of the included studies is presented,providing a comprehensive description of their key features and findings.Results:A total of 121 studies were included in this review for analysis.Some of them were considered as comprehensive experimental investigations both in vitro and in vivo.The majority(n=85)of the studies included in this review were conducted in vitro,with 44 of them specifically investigating the effects of herbal medicine on animal models.Additionally,7 articles with a combined sample size of 31,271 patients,examined the impact of herbal medicine in clinical settings.Conclusion:Personalized medication can optimize the use of herbal medicine in cancer treatment by considering individual patient factors such as genetics,medical history,and other treatments.Additionally,active phytochemicals found in herbs have shown potential for inhibiting cancer cell growth and inducing apoptosis,making them a promising area of research in preclinical and clinical investigations.
基金Supported by National Excellent Natural Science Foundation of China(Grant No.52122503)Hebei Provincial Natural Science Foundation of China(Grant No.E2022203002)+2 种基金The Yanzhao’s Young Scientist Project of China(Grant No.E2023203258)Science Research Project of Hebei Education Department of China(Grant No.BJK2022060)Hebei Provincial Graduate Innovation Funding Project of China(Grant No.CXZZSS2022129).
文摘Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.
基金National Key R&D Program of China(2021YFD 1600301 and 2021YFD1600105)Hunan Provincial Key Research and Development Project(2023NK2041).
文摘Objective To summarize the uric acid-lowering effects and mechanisms of Chinese medicines with medicine-food homology,aiming to provide novel perspectives for the devel-opment of new anti-hyperuricemia(HUA)drugs.Methods Papers on the research of HUA prevention and treatment with medicine-food ho-mology from December 15,2002 to August 10,2024 were screened and collected through Chi-na National Knowledge Infrastructure(CNKI),PubMed,ScienceDirect,and Google Scholar.Subsequently,the impact of these medications and their extracts,as well as the active com-pounds on HUA were assessed.Results A total of 148 relevant papers were collected,including 43 kinds of Chinese medicines and 61 active compounds,all of which have anti-HUA activity.Among them,41 kinds of Chinese medicines could inhibit the activity of xanthine oxidase,thus leading to the inhibition of uric acid production;and 22 kinds of Chinese medicines could facilitate uric acid excretion,while 15 kinds of Chinese medicines could reduce the inflammation levels in the body and promoting renal protection.Notably,polyphenols and flavonoids are the key active components for the uric acid-lowering effects.Conclusion This study systematically summarized and analyzed the uric acid-lowering ef-fects and mechanisms of Chinese medicines with medicine-food homology,laying a founda-tion for their development as HUA agents.
文摘A wide number of natural molecules demonstrated neuroprotective effects on synaptic plasticity defects induced by amyloid-β(Aβ)in ex vivo and in vivo Alzheimer's disease(AD)models,suggesting a possible use in the treatment of this neurodegenerative disorder.However,several compounds,administered parenterally and orally,are unable to reach the brain due to the presence of the blood-brain barrier(BBB)which prevents the passage of external substances,such as proteins,peptides,or phytocompounds,representing a limit to the development of treatment for neurodegenerative diseases,such as AD.The combination of nano vesicular systems,as colloidal systems,and nose to brain(NtB)delivery depicts a new nanotechnological strategy to overtake this limit and to develop new treatment approaches for brain diseases,including the use of natural molecules in combination therapy for AD.Herein,we will provide an updated overview,examining the literature of the last 20 years and using specific keywords that provide evidence on natural products with the ability to restore synaptic plasticity alterations in AD models,and the possible application using safe and non-invasive strategies focusing on nano vesicular systems for NtB delivery.
基金supported by the Heilongjiang Provincial Natural Science Foundation of China(grant no.LH2033C107)the National Key Research and Development Program of China(2023YFD1801302)the Central Public-interest Scientific Institution Basal Research Fund(grant no.1610302022010).
文摘Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics(RG)system in the past.Since 2017,multiple plasmid-based RG systems for simian,human,and murine-like rotaviruses have been established.However,none of the described methods have supported the recovery of bovine rotaviruses(BRVs).Here,we established an optimized plasmid-based RG system for BRV culture-adapted strain(BRV G10P[15]BLR)and clinical isolates(BRV G6P[1]C73,G10P[11]HM26)based on a BHK-T7 cell clone stably expressing T7 polymerase.Furthermore,using this optimized RG system,we successfully rescued the reporter virus BRV rC73/Zs,rHM26/Zs and rBLR/Zs,harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3(NSP3)fused to ZsGreen,a 232-amino acid green fluorescent protein.Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging,while rHM26/Zs can be stabilized only up to the third generation,indicating that the BRV segment composition may influence the viral fitness.In addition,we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus.In summary,this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.
文摘Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compounds hold potential as a natural antidiabetic intervention that can be used to combat this global public health problem. Bioactive compounds found in this plant constitute promising interventions for combating obesity which is a major risk factor for the development of type 2 diabetes. These phytocompounds can work independently or synergistically to modulate appetite, lipase activity, adipogenesis and adipocyte apoptosis. However, the efficacy, mode of action and scope of management of diabetes by these compounds remains elusive. The current review aims to summarize data on efficacy in the management of diabetes, an antidiabetic candidate polyacetylenic compound and possible biological activities as an antidiabetic agent from the available literature. Much emphasis has been directed to cytopiloyne as a representative of polyacetylenic compounds extracted from Bidens pilosa and its activity on diabetic animal models. The majority of the studies conducted on animal models described antidiabetic mechanisms that range from hypoglycemic to secretagogue activity of cytopiloyne in a dose-dependent manner. A clinical trial pilot indicated improved glycemic control of Bidens pilosa formulation among diabetic patients in the study. Bidens pilosa and its compounds are highly potent antidiabetic agent(s) that should be graduated to an intervention for management of diabetes through pre-clinical and clinical trials to elucidate its efficacy and safety.
基金Projects (50901017,50731002) supported by the National Natural Science Foundation of ChinaProject (20090042120008) supported by Doctoral Program Foundation of Institutions of Higher Education of ChinaProjects (N100702001,N090502002) supported by the Fundamental Research Funds of the Central Universities,China
文摘The phase equilibria and compositions in Mg-rich comer at 300℃ were determined in the Mg-Zn-A1 ternary system through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) assisted with energy dispersive spectroscopy of X-ray (EDS). The results show that there exist three three-phase regions consisted of a-Mg+Mg17A112(7)+A15Mg11Zn4(φ), a-Mg+Mga2(Al, Zn)49(r)+A15MgllZn4(φ) and a-Mg+MgZn+Mg32(A1, Zn)49(r), respectively. The intermetallic compounds in equilibrium with a-Mg phase all have large composition ranges, not appear to be linear. At the same time, both zinc and aluminum are soluble in the a-Mg solid solution, with which the compounds are in equilibrium.
基金Project (50771027) supported by the National Natural Science Foundation of China
文摘The phase equilibria in Co-rich region of Co-Ti-Ta system were studied.The microstructure and XRD analysis together with EDS determination show that L12 type Co3Ti phase and Laves_C36_Co3Ta phase get equilibrium with α-Co phase from 1 000 to 1 200 ℃.The Co3Ti phase possesses a solubility of Ta higher than 10%,and the addition of Ta stabilizes the Co3Ti phase.The isothermal sections of the Co-Ti-Ta system in the Co-rich region at 1 000,1 100 and 1 200 ℃ were constructed according to the result.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
基金Projects(50901017,51171043,51271053)supported by the National Natural Science Foundation of ChinaProject(20090042120008)supported by the Doctoral Program Foundation of Institutions of Higher Education of ChinaProject(2011BAE22B04-2)supported by National Key Technology R&D Program of China during the Twelfth Five-Year Plan Period
文摘The phase equilibria and compositions at the Mg-rich corner of the Mg?Zn?Al ternary system at 335 °C were systemically investigated through the equilibrated alloy method by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) assisted with energy dispersive spectroscopy of X-ray (EDS). It is experimentally testified that theα-Mg solid solution is not in equilibrium with the Mg32(Al, Zn)49 (τ) ternary intermetallic compound orq quasicrystalline phase, but only in equilibrium with one ternary intermetallic compound Al5Mg11Zn4 (φ). The whole composition range of theφ phase was also obtained at 335 °C, i.e., 52.5%?56.4% Mg, 13.6%?24.0% Al, 19.6%?33.9% Zn (mole fraction). The solubility of Al in the MgZn phase is remarkably more than that in the Mg7Zn3 phase, and the maximum is about 8.6% Al. Aluminum and zinc are simultaneously soluble in theα-Mg solid solution.
文摘This paper analyzes the compound attractor structure of a new three-dimensional autonomous chaotic system. First, it is found that there exist five equilibria in the chaotic system, and the stabilities of these equilibria are discussed under a constant scalar control input parameter m. Secondly, the trajectories of the attractors on a y-z plane are examined, the reasons why these trajectories can exist or disappear are also described. Finally, the forming procedure of the different scrolls chaotic attractor is explored by computer simulations when the parameter m is varied. It is shown that the new chaotic attractor has a compound structure, it can evolve to other three-dimensional autonomous chaotic systems. The results of theoretical analysis and simulation are helpful for better understanding of other similar chaotic systems.
基金Supported by Beijing Municipal Student Research Training Program in Beijing ForestryUniversity(S201310022020)Fundamental Research Funds for the Central Universities(TD2011-14)~~
文摘[Objective]Preservation and waterproof treatment are two crucial parts in wood protection, which can not only extend the service time, but also expand the application range of wood products. [Method] This work combined CA with paraffin wax emulsion to treat wood samples, and basic properties of the compound system, such as stability (storage stability and centrifugal stability), particle size and pH val-ue, and water repel ency (water absorption, shrinkage and swel ing) of treated sam-ples were investigated. [Result and Conclusion] 1) the compound systems of CA and paraffin latex had a favorable miscibility and stability; 2) compared with untreated wood, CA-treated samples showed poor water repel ing properties, whereas samples treated with the compound systems indicated an obvious reduction in water absorp-tion, and the shrinkage and swel ing of them were improved as wel .
文摘Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.