The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The re...The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The relationship between the ratio of Fe-Al compound at interface and bonding parameters (such as preheat temperature of steel plate, solid fraction of Al-7graphite slurry and rolling speed) was established by artificial neural networks perfectly. The results show that when the bonding parameters are 516 ℃ for preheat temperature of steel plate, 32.5% for solid fraction of Al-7graphite slurry and 12 mm/s for rolling speed, the reasonable ratio of Fe-Al compound corresponding to the largest interfacial shear strength of bonding plate is obtained to be 70.1%. This reasonable ratio of Fe-Al compound is a quantitative criterion of interracial embrittlement, namely, when the ratio of Fe-Al compound at interface is larger than 70.1%, interfacial embrittlement will occur.展开更多
The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The...The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The results show that there is a nonlinear relationship between the ratio of Fe-Al compound at the interface and the interfacial shear strength. When the ratio of Fe-Al compound at the interface is smaller than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength increases gradually; when the ratio of Fe-Al compound at the interface is larger than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength decreases continuously; when the ratio of Fe-Al compound at the interface is 71.4%, the largest interfacial shear strength 70.2MPa is obtained.展开更多
The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy ...The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy Al-20 Sn bonding plate quantitatively. The effect of ratio of Fe-Al compound at interface on interacial shear strength was investigated perfectly. The results show that the relationship between ratio of Fe-Al compound at interace and interfacial shear strength is S = 3.3 + 1.91 t - 0.0135t^2 ( where t is ratio of Fe-Al compound at in- terface and S is interfacial shear strength ). When the ratio of Fe-Al compound at interface is 71%, the largest interfacial shear strength 70.9 MPa is got. This reasonable ratio of Fe-Al compound at interface is a quarttitative criterion of interfacial embrittlement. When the ratio of Fe-Al compound at interface is higher than 71% , interfacial embrittlement will occur.展开更多
基金Project(50054) supported by the Program for New Century Excellent Talents in Universityproject(20060004020) supported by the Research Fund for the Doctoral Program of Higher Education+1 种基金project(3062017) supported by the Natural Science Foundation of Beijing, Chinaproject(2004SZ007) supported by the Foundation of Beijing Jiaotong University
文摘The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The relationship between the ratio of Fe-Al compound at interface and bonding parameters (such as preheat temperature of steel plate, solid fraction of Al-7graphite slurry and rolling speed) was established by artificial neural networks perfectly. The results show that when the bonding parameters are 516 ℃ for preheat temperature of steel plate, 32.5% for solid fraction of Al-7graphite slurry and 12 mm/s for rolling speed, the reasonable ratio of Fe-Al compound corresponding to the largest interfacial shear strength of bonding plate is obtained to be 70.1%. This reasonable ratio of Fe-Al compound is a quantitative criterion of interracial embrittlement, namely, when the ratio of Fe-Al compound at interface is larger than 70.1%, interfacial embrittlement will occur.
文摘The interfacial properties of steel-mushy Al-28Pb bonding plate with different interfacial structures, and the influence of ratio of Fe-Al compound at the interface on interfacial shear strength were investigated. The results show that there is a nonlinear relationship between the ratio of Fe-Al compound at the interface and the interfacial shear strength. When the ratio of Fe-Al compound at the interface is smaller than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength increases gradually; when the ratio of Fe-Al compound at the interface is larger than 71.4%, with the increase of the ratio of Fe-Al compound at the interface, the interfacial shear strength decreases continuously; when the ratio of Fe-Al compound at the interface is 71.4%, the largest interfacial shear strength 70.2MPa is obtained.
基金Funded by the National Natural Science Foundation of China(No.50274047 and 50304001) ,BeijingJiaotong University Founda-tion and the Foundation of the Ministry of Education of China ,andthe National Science Foundation of Beijing
文摘The ratio of Fe-Al compound at interace, which could determine the quarttity of Fe-Al compound at the interace of steel-mushy Al- 20 Sn bonding plate, was used to characterize the interfacial structure of steel-mushy Al-20 Sn bonding plate quantitatively. The effect of ratio of Fe-Al compound at interface on interacial shear strength was investigated perfectly. The results show that the relationship between ratio of Fe-Al compound at interace and interfacial shear strength is S = 3.3 + 1.91 t - 0.0135t^2 ( where t is ratio of Fe-Al compound at in- terface and S is interfacial shear strength ). When the ratio of Fe-Al compound at interface is 71%, the largest interfacial shear strength 70.9 MPa is got. This reasonable ratio of Fe-Al compound at interface is a quarttitative criterion of interfacial embrittlement. When the ratio of Fe-Al compound at interface is higher than 71% , interfacial embrittlement will occur.