期刊文献+
共找到288篇文章
< 1 2 15 >
每页显示 20 50 100
Improved CICA Algorithm Used for Single Channel Compound Fault Diagnosis of Rolling Bearings 被引量:14
1
作者 CHEN Guohua QIE Longfei +1 位作者 ZHANG Aijun HAN Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期204-211,共8页
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envel... A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals. 展开更多
关键词 compound fault diagnosis energy method constrained independent component analysis(CICA) diserete wavelet transform(DWT)
在线阅读 下载PDF
Compound Fault Diagnosis for Rotating Machinery:State-of-the-Art,Challenges,and Opportunities 被引量:10
2
作者 Ruyi Huang Jingyan Xia +2 位作者 Bin Zhang Zhuyun Chen Weihua Li 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第1期13-29,共17页
Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault ... Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault diagnosis(CFD),researchers and engineers from industry and academia have made numerous significant breakthroughs in recent years.Admittedly,many systematic surveys focused on fault diagnosis have been conducted by reputable researchers.Nevertheless,previous review articles paid more attention to fault diagnosis with several single or independent faults,resulting in that there is still lacking a comprehensive survey on CFD.Therefore,to fulfill the above requirements,it is necessary to provide an in-depth overview of fault diagnosis methods or algorithms for compound faults of rotating machinery and uncover potential challenges or opportunities that would guide and inspire readers to devote their efforts to promoting fault diagnosis technology more effective and practical.Specifically,the backgrounds,including the related definitions and a new taxonomy of CFD methods,are detailed according to the way of implementing compound fault recognition.Then,the stateof-the-art applications of CFD are overviewed based on relevant publications in the past decades.Finally,the challenges and opportunities associated with implementing CFD are concluded and followed by a conclusion for ending this survey.We believe that this review article can provide a systematic guideline of CFD from different aspects for potential readers and seasoned researchers. 展开更多
关键词 fault diagnosis compound fault signal processing artificial intelligence rotating machinery
在线阅读 下载PDF
A multi-scale convolutional neural network for bearing compound fault diagnosis under various noise conditions 被引量:10
3
作者 JIN YanRui QIN ChengJin +2 位作者 ZHANG ZhiNan TAO JianFeng LIU ChengLiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2551-2563,共13页
Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has... Recently,with the urgent demand for data-driven approaches in practical industrial scenarios,the deep learning diagnosis model in noise environments has attracted increasing attention.However,the existing research has two limitations:(1)the complex and changeable environmental noise,which cannot ensure the high-performance diagnosis of the model in different noise domains and(2)the possibility of multiple faults occurring simultaneously,which brings challenges to the model diagnosis.This paper presents a novel anti-noise multi-scale convolutional neural network(AM-CNN)for solving the issue of compound fault diagnosis under different intensity noises.First,we propose a residual pre-processing block according to the principle of noise superposition to process the input information and present the residual loss to construct a new loss function.Additionally,considering the strong coupling of input information,we design a multi-scale convolution block to realize multi-scale feature extraction for enhancing the proposed model’s robustness and effectiveness.Finally,a multi-label classifier is utilized to simultaneously distinguish multiple bearing faults.The proposed AM-CNN is verified under our collected compound fault dataset.On average,AM-CNN improves 39.93%accuracy and 25.84%F1-macro under the no-noise working condition and 45.67%accuracy and 27.72%F1-macro under different intensity noise working conditions compared with the existing methods.Furthermore,the experimental results show that AM-CNN can achieve good cross-domain performance with 100%accuracy and 100%F1-macro.Thus,AM-CNN has the potential to be an accurate and stable fault diagnosis tool. 展开更多
关键词 ANTI-NOISE residual pre-processing block bearing compound fault multi-label classifier multi-scale convolution feature extraction
原文传递
Construction of adaptive redundant multiwavelet packet and its application to compound faults detection of rotating machinery 被引量:7
4
作者 CHEN JingLong ZI YanYang +1 位作者 HE ZhengJia WANG XiaoDong 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第8期2083-2090,共8页
It is significant to detect the fault type and assess the fault level as early as possible for avoiding catastrophic accidents.Due to diversity and complexity,the compound faults detection of rotating machinery under ... It is significant to detect the fault type and assess the fault level as early as possible for avoiding catastrophic accidents.Due to diversity and complexity,the compound faults detection of rotating machinery under non-stationary operation turns to be a challenging task.Multiwavelet with two or more base functions may match two or more features of compound faults,which may supply a possible solution to compound faults detection.However,the fixed basis functions of multiwavelet transform,which are not related with the vibration signal,may reduce the accuracy of compound faults detection.Moreover,the decomposition results of multiwavelet transform not being own time-invariant is harmful to extract the features of periodical impulses.Furthermore,multiwavelet transform only focuses on the multi-resolution analysis in the low frequency band,and may leave out the useful features of compound faults.To overcome these shortcomings,a novel method called adaptive redundant multiwavelet packet(ARMP) is proposed based on the two-scale similarity transforms.Besides,the relative energy ratio at the characteristic frequency of the concerned component is computed to select the sensitive frequency bands of multiwavelet packet coefficients.The proposed method was used to analyze the compound faults of rolling element bearing.The results showed that the proposed method could enhance the ability of compound faults detection of rotating machinery. 展开更多
关键词 adaptive redundant multiwavelet packet compound faults detection feature extraction rolling element bearing
原文传递
Intrinsic component filtering for fault diagnosis of rotating machinery 被引量:4
5
作者 Zongzhen ZHANG Shunming LI +2 位作者 Jiantao LU Yu XIN Huijie MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期397-409,共13页
Fault diagnosis of rotating machinery has always drawn wide attention.In this paper,Intrinsic Component Filtering(ICF),which achieves population sparsity and lifetime consistency using two constraints:l1=2 norm of col... Fault diagnosis of rotating machinery has always drawn wide attention.In this paper,Intrinsic Component Filtering(ICF),which achieves population sparsity and lifetime consistency using two constraints:l1=2 norm of column features and l3=2-norm of row features,is proposed for the machinery fault diagnosis.ICF can be used as a feature learning algorithm,and the learned features can be fed into the classification to achieve the automatic fault classification.ICF can also be used as a filter training method to extract and separate weak fault components from the noise signals without any prior experience.Simulated and experimental signals of bearing fault are used to validate the performance of ICF.The results confirm that ICF performs superior in three fault diagnosis fields including intelligent fault diagnosis,weak signature detection and compound fault separation. 展开更多
关键词 compound fault separation Intelligent fault diagnosis Intrinsic component filtering Unsupervised learning Weak signature detection
原文传递
SUPERDISLOCATION DISSOCIATION IN INTERMETALLIC COMPOUND Ni_3Al 被引量:1
6
作者 Mao Wen Present addresss: Institute of Materials Science, South China University of Technology, Guangzhou 510641, P.R. China and Dongliang Lin (T. L. Lin) Open Laboratory for High Temperature Materials and Tests, School of Materials Science and Enginee 《中国有色金属学会会刊:英文版》 CSCD 1999年第S1期95-99,共5页
The dissociation of a [1-01] superdislocation in Ni 3Al was studied by computer simulation techniques using the embedded atom method (EAM). Three types of dissociation were obtained, depending on the initial position ... The dissociation of a [1-01] superdislocation in Ni 3Al was studied by computer simulation techniques using the embedded atom method (EAM). Three types of dissociation were obtained, depending on the initial position of elastic centers of the superdislocation. One is the stable planar dissociation that the superdislocation dissociates on only one {111} plane into a pair of 1/2[1-01] superpartials separated by antiphase boundary (APB). Another stable dissociation is that it occurs on two adjacent {111} planes joined by an intersecting {111} or (010) plane. The metastable one is that the dissociation occurs in T shape: the superdislocation dissociates on two intersecting {111} planes into three partials: one 1/2[1-01] partial and two widely separated 1/6〈112〉 Shockley partials with a complex stacking fault (CSF) in between. 展开更多
关键词 NI 3Al compound superdislocation DISSOCIATION STACKING faultS
在线阅读 下载PDF
Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations
7
作者 Yong Zhang Zi-Ran Liu +4 位作者 Ding-Wang Yuan Qin Shao Jiang-Hua Chen Cui-Lan Wu Zao-Li Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第9期1099-1110,共12页
Owing to the excellent elastic properties and chemical stability,binary metal or light element borides,carbides and nitrides have been extensively applied as hard and low-compressible materials.Researchers are searchi... Owing to the excellent elastic properties and chemical stability,binary metal or light element borides,carbides and nitrides have been extensively applied as hard and low-compressible materials.Researchers are searching for harder materials all the time.Recently,the successful fabrication of nano-twinned cubic BN(Tian et al.Nature 493:385–388,2013)and diamond(Huang et al.Nature 510:250–253,2014)exhibiting superior properties than their twin-free counterparts allows an efficient way to be harder.From this point of view,the borides,carbides and nitrides may be stronger by introducing twins,whose formation tendency can be measured using stacking fault energies(SFEs).The lower the SFEs,the easier the formation of twins.In the present study,by means of first-principles calculations,we first calculated the fundamental elastic constants of forty-two borides,seventeen carbides and thirty-one nitrides,and their moduli,elastic anisotropy factors and bonding characters were accordingly derived.Then,the SFEs of the{111}<112>glide system of twenty-seven compounds with the space group F43 m or Fm3m were calculated.Based on the obtained elastic properties and SFEs,we find that(1)light element compounds usually exhibit superior elastic properties over the metal borides,carbides or nitrides;(2)the 5 d transitionmetal compounds(ReB2,WB,OsC,RuC,WC,OsN2,TaN and WN)possess comparable bulk modulus(B)with that of cBN(B=363 GPa);(3)twins may form in ZrB,HfN,PtN,VN and ZrN,since their SFEs are lower or slightly higher than that of diamond(SFE=277 mJ/m^2).Our work can be used as a valuable database to compare these compounds. 展开更多
关键词 INORGANIC compounds Elastic properties STACKING fault ENERGIES FIRST-PRINCIPLES CALCULATIONS
原文传递
一种改进特征模态分解的滚动轴承复合故障特征提取方法 被引量:2
8
作者 雷娜 吕泽宇 +2 位作者 唐友福 缪皓 刘幸倩 《机械设计与制造工程》 2025年第2期57-62,共6页
为了能够有效提取滚动轴承复合故障特征信息,提出一种改进特征模态分解(FMD)的滚动轴承复合故障特征提取方法。该方法首先根据AR功率谱划分频带区间,并设置双层滤波器以防止中心频率偏移;然后根据阈值筛选指标删除虚假模态;最后对剩余... 为了能够有效提取滚动轴承复合故障特征信息,提出一种改进特征模态分解(FMD)的滚动轴承复合故障特征提取方法。该方法首先根据AR功率谱划分频带区间,并设置双层滤波器以防止中心频率偏移;然后根据阈值筛选指标删除虚假模态;最后对剩余模态进行包络谱分析,以此对滚动轴承进行故障诊断。结果表明:该方法能够在包含强噪声的复合故障信号中成功分离故障分量,有效降低算法的时间复杂度,为滚动轴承故障诊断提供一种新途径。 展开更多
关键词 特征模态分解 滚动轴承 复合故障 特征提取 故障诊断
在线阅读 下载PDF
基于ISWD的农用轴承复合故障特征提取方法
9
作者 焦华超 孙文磊 +1 位作者 王宏伟 万晓静 《中国农机化学报》 北大核心 2025年第3期222-229,共8页
针对农用轴承故障诊断过程中受到传播路径耦合与强烈背景噪声的影响,复合故障特征较难提取的问题,提出基于包络谱相关峭度的改进群分解(ISWD)方法,实现农用轴承复合故障特征的自适应提取。首先,利用对周期性冲击较为敏感的包络谱相关峭... 针对农用轴承故障诊断过程中受到传播路径耦合与强烈背景噪声的影响,复合故障特征较难提取的问题,提出基于包络谱相关峭度的改进群分解(ISWD)方法,实现农用轴承复合故障特征的自适应提取。首先,利用对周期性冲击较为敏感的包络谱相关峭度为适应度函数,提升SWD对微弱故障特征的提取能力;其次,利用改进灰狼算法,实现SWD关键阈值P th和T th的寻优;最后,对ISWD分解出的振荡分量(OC)做包络解调处理,凸显故障特征频率,实现轴承复合故障特征的提取。仿真分析和试验分析表明,该方法能够高效提取农用齿轮箱复合故障的特征,相比于传统的变分模态分解(VMD),减少27%的冗余分量占比,提高100%的内圈有效特征数量;与SWD相比,不仅内圈有效特征数量提升100%,外圈有效特征数量也提高25%,为农用轴承故障智能诊断方法的开发提供参考。 展开更多
关键词 农用轴承 复合故障 故障特征提取 改进群分解 相关峭度
在线阅读 下载PDF
往复压缩机传动机构复合间隙故障的动力学响应分析
10
作者 雷娜 丁涵 +3 位作者 唐友福 缪皓 姜佩辰 黄飞虎 《噪声与振动控制》 北大核心 2025年第3期113-119,共7页
针对往复压缩机传动机构因磨损产生的多个部位、多种类型的间隙故障耦合所造成的影响问题,开展带复合间隙故障的传动机构刚柔耦合模型动力学仿真研究。首先,将接触力与摩擦力作为运动副间隙之间的接触约束,依据传动机构前6阶模态特性构... 针对往复压缩机传动机构因磨损产生的多个部位、多种类型的间隙故障耦合所造成的影响问题,开展带复合间隙故障的传动机构刚柔耦合模型动力学仿真研究。首先,将接触力与摩擦力作为运动副间隙之间的接触约束,依据传动机构前6阶模态特性构建多体动力学刚柔耦合模型;然后,针对不同工况与润滑条件对十字头振动加速度的影响,进行了单一间隙故障和复合间隙故障下的动力学响应分析;最后,通过由故障试验所得的实测信号验证多体动力学刚柔耦合建模方法的有效性。仿真结果表明:与单一轴承间隙故障相比,同类轴承复合间隙故障下十字头振动加速度减小,而不同类轴承-滑道复合间隙故障下十字头振动加速度增大。此外,摩擦力和转速增大,会进一步加剧复合间隙故障下十字头振动冲击幅值与次数。 展开更多
关键词 故障诊断 往复压缩机 复合间隙故障 动力学响应 刚柔耦合
在线阅读 下载PDF
分布式电驱动重载车辆复合转向容错控制策略研究
11
作者 李军求 陈胜玥 +2 位作者 陈建文 杨永喜 李潇汉 《汽车工程》 北大核心 2025年第4期724-733,700,共11页
分布式电驱动重载车辆采用转向助力电机和轮端驱动电机差动实现复合转向,通过对多电机协调控制实现多种主动安全控制功能并降低驾驶员操纵负担。针对驱动电机和转向助力电机失效故障带来的行驶安全性问题,本文提出一种包含模式切换和容... 分布式电驱动重载车辆采用转向助力电机和轮端驱动电机差动实现复合转向,通过对多电机协调控制实现多种主动安全控制功能并降低驾驶员操纵负担。针对驱动电机和转向助力电机失效故障带来的行驶安全性问题,本文提出一种包含模式切换和容错转矩分配的容错控制策略。所提模式切换策略依据车辆位姿信息,引入横摆角速度残差函数作为容错模式的切换条件;所提容错转矩分配策略考虑输出冗余和整车稳定性,求解驱动电机和转向助力电机的目标输出转矩。最后,搭建硬件在环仿真平台验证了控制策略的有效性和实时性。 展开更多
关键词 分布式驱动 复合转向 执行器失效故障 容错控制
在线阅读 下载PDF
基于循环神经网络的核电厂复合故障诊断方法 被引量:5
12
作者 陈逸龙 林萌 周士祺 《海军工程大学学报》 北大核心 2025年第1期36-42,共7页
核电厂单一故障识别的方法有很多,但是由于核电厂的复杂性,复合故障识别的难度较大,且传统故障诊断方法存在难以利用核电厂运行数据中时序信息的问题。针对上述问题,提出一种循环神经网络和多标签分类方法相结合的核电厂复合故障诊断方... 核电厂单一故障识别的方法有很多,但是由于核电厂的复杂性,复合故障识别的难度较大,且传统故障诊断方法存在难以利用核电厂运行数据中时序信息的问题。针对上述问题,提出一种循环神经网络和多标签分类方法相结合的核电厂复合故障诊断方法。该方法首先将故障数据切分为携带时序信息的输入样本;然后,通过循环神经网络提取故障样本中的时序特征;最后,通过多标签分类器完成多个故障标签的解耦输出,实现了复合故障的诊断。仿真实验验证了所提方法无论是对单一故障还是复合故障都具有良好的故障诊断效果。同时,还探究了不同循环神经单元和不同长度的输入样本对模型诊断效果的影响,结果表明:LSTM模型和GRU模型的效果优于常规RNN模型,且增加输入样本的长度并不一定能够提升模型诊断准确率。 展开更多
关键词 核电厂 循环神经网络 复合故障 多标签 深度学习
在线阅读 下载PDF
基于VMD、PTSMFE与GWO-SVM的直流充电桩电源模块故障诊断方法研究
13
作者 刘志峰 蒋浩 +1 位作者 刘贺 李新宇 《中国测试》 北大核心 2025年第8期87-97,共11页
为有效实施直流充电桩电源模块的回收再利用,必须克服故障诊断中串并联开关器件特征提取困难和故障定位不准确的难题。为此,提出变分模态分解(variational modal decomposition, VMD)、相位复合时移多尺度模糊熵(phase compound time-sh... 为有效实施直流充电桩电源模块的回收再利用,必须克服故障诊断中串并联开关器件特征提取困难和故障定位不准确的难题。为此,提出变分模态分解(variational modal decomposition, VMD)、相位复合时移多尺度模糊熵(phase compound time-shift multiscale fuzzy entropy, PTSMFE)和灰狼优化算法优化支持向量机分类器(gray wolf optimization algorithm-support vector machine classifier, GWO-SVM)的充电桩故障诊断方法。首先将采集的原始故障信号分解成多组本征模态函数(intrinsic mode function, IMF),再利用PTSMFE提取出故障信号的原始相位信息,并转化成相位系数后加入熵值中,得到各故障状态的特征向量。最后将特征向量输入GWO-SVM进行故障识别分类。实验结果表明:与常用的小波分析(wavelet analysis)特征提取和BP(back propagation)神经网络故障诊断方法进行对比,该文方法展现出准确性与高效性,分类识别准确率达到97.27%。 展开更多
关键词 直流充电桩电源模块 故障诊断 回收再利用 相位复合时移多尺度模糊熵
在线阅读 下载PDF
奇异谱分解和最大相关峭度解卷积在轴承故障声学诊断中的应用
14
作者 姚容华 周俊 +1 位作者 伍星 刘韬 《振动工程学报》 北大核心 2025年第8期1764-1774,共11页
故障特征成分的有效分离是滚动轴承复合故障诊断的核心,在强噪声及各个故障之间相互干扰耦合的背景下,滚动轴承声学复合故障诊断极具挑战性。本文提出一种优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和参数自适应... 故障特征成分的有效分离是滚动轴承复合故障诊断的核心,在强噪声及各个故障之间相互干扰耦合的背景下,滚动轴承声学复合故障诊断极具挑战性。本文提出一种优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和参数自适应最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)的复合故障声学诊断方法。采用包络峭度作为指标辅助OSSD快速确定最佳分解层数,以克服人工经验确定分解层数的不确定性,将信号分解为多个奇异谱分量。将故障特征频率能量幅值比作为指标自适应选择包含主要故障特征信息的两个奇异谱分量。利用参数自适应MCKD对所选择的最佳分量进行滤波和信号特征增强,通过包络谱分析提取故障特征频率实现故障诊断。通过滚动轴承仿真信号和试验声学信号验证了所提方法的有效性,该研究为旋转机械复合故障诊断提供了一种手段。 展开更多
关键词 复合故障 滚动轴承 奇异谱分解 最大相关峭度解卷积
在线阅读 下载PDF
基于可训练去噪和可解释多尺度二次卷积的复合故障诊断
15
作者 魏可丰 孙国玺 张清华 《机床与液压》 北大核心 2025年第24期196-204,228,共10页
现有多数故障诊断技术通常假设仅有单个机械故障发生,而忽略了同时发生两个或多个类型的复合故障情况。由于实际应用环境的复杂多变,复合故障更常见且危害更大。针对此,提出一种在噪声工况下用于复合故障诊断的可训练去噪和多尺度二次... 现有多数故障诊断技术通常假设仅有单个机械故障发生,而忽略了同时发生两个或多个类型的复合故障情况。由于实际应用环境的复杂多变,复合故障更常见且危害更大。针对此,提出一种在噪声工况下用于复合故障诊断的可训练去噪和多尺度二次卷积模型。将U-Net网络结构与残差学习相结合,提出一种在噪声工况下有效提取去噪信息的残差预处理模块,设计一种新的损耗函数,以在反向传播过程中更新模块参数,从而在不同强度的噪声中获取实际振动信号输入,并且与后续网络进行端到端训练。为了提高模型的性能,基于多尺度学习思想,应用多尺度二次卷积网络从振动信号中学习多尺度特征,并且通过推导建立自相关和二次神经元在数学上的联系,解释了二次网络卓越的信号特征表示能力。考虑大型旋转机械轴承和齿轮的单故障和复合故障,通过公共数据集和专有数据集进行实验验证。结果表明:所提方法在不同强度噪声下对单故障和复合故障的识别能力显著优于现有技术,验证了其有效性,其中二次卷积和可学习自相关项起关键作用。 展开更多
关键词 可训练去噪 多尺度 二次卷积 复合故障诊断
在线阅读 下载PDF
劣化作用下裂纹-断齿复合故障齿轮系统动态特性研究
16
作者 白宇 姜宏 +1 位作者 章翔峰 雷震 《组合机床与自动化加工技术》 北大核心 2025年第9期44-49,共6页
在现有研究中,裂纹-断齿复合故障的研究往往忽略了故障自身劣化过程对系统特性的影响。对此,基于势能法并考虑齿间耦合作用建立裂纹-断齿耦合故障齿轮啮合刚度计算模型,求解含劣化过程的齿轮时变啮合刚度,并建立啮合型弯扭耦合动力学模... 在现有研究中,裂纹-断齿复合故障的研究往往忽略了故障自身劣化过程对系统特性的影响。对此,基于势能法并考虑齿间耦合作用建立裂纹-断齿耦合故障齿轮啮合刚度计算模型,求解含劣化过程的齿轮时变啮合刚度,并建立啮合型弯扭耦合动力学模型,研究复合故障下齿轮系统的动态响应。通过实验验证了该方法的有效性。结果表明,裂纹和断齿均会降低齿轮的啮合刚度,断齿故障导致刚度发生突变,而裂纹故障下刚度变化相对平稳,耦合故障下系统刚度由更为严重的故障主导,随着故障程度的不断加深,刚度下降愈发明显。通过分析劣化过程中周期性冲击成分与边频带的演变模式,阐明了裂纹与断齿故障之间耦合现象的动态演化趋势。 展开更多
关键词 齿轮箱 复合故障 时变啮合刚度 动态特性 劣化
在线阅读 下载PDF
基于注意力残差神经网络的滚动轴承复合故障诊断方法
17
作者 唐嘉辉 成小乐 +1 位作者 孙戬 胡胜 《机械设计》 北大核心 2025年第11期99-105,共7页
文中旨在提出一种针对旋转设备中滚动轴承故障的智能诊断框架,该框架充分利用深度学习技术在处理复杂机械振动信号中的强大潜力,以解决大数据环境下旋转机械故障诊断的挑战。基于此,通过结合卷积神经网络在特征提取方面的优势及高处理速... 文中旨在提出一种针对旋转设备中滚动轴承故障的智能诊断框架,该框架充分利用深度学习技术在处理复杂机械振动信号中的强大潜力,以解决大数据环境下旋转机械故障诊断的挑战。基于此,通过结合卷积神经网络在特征提取方面的优势及高处理速度,提出了一种基于残差神经网络的滚动轴承故障诊断模型,改善了传统卷积结构因深度提升而导致的性能退化现象。为了提升模型对细微及复杂故障特征的识别能力,在模型中引入了注意力机制,该机制能够动态调整网络对输入数据的关注度,显著增强了模型对关键故障特征的敏感度。最后,在试验阶段考虑了更接近于实际工况下的轴承复合故障,结果表明:文中模型可有效实现滚动轴承单一故障与复合故障的精确识别。 展开更多
关键词 滚动轴承 残差神经网络 注意力机制 复合故障
原文传递
实复域多尺度多层次融合的复合故障定位方法
18
作者 宋佳宇 高雪莲 陈哲煊 《电子测量技术》 北大核心 2025年第5期118-127,共10页
针对模拟电路多故障并发的定位问题,提出了一种实复域相结合的定位算法。在实数域利用空间和通道注意力机制的不同操作,在控制网络深度和参数数量的同时获取完整数据特征;在复数域利用复数卷积神经网络跨越层级产生的差异,通过跳跃联接... 针对模拟电路多故障并发的定位问题,提出了一种实复域相结合的定位算法。在实数域利用空间和通道注意力机制的不同操作,在控制网络深度和参数数量的同时获取完整数据特征;在复数域利用复数卷积神经网络跨越层级产生的差异,通过跳跃联接构建深浅层特征融合结构,保留了易丢失的浅层信息并将其与深层信息融合后得到复数域特征。将实复域特征融合用于模拟电路复合故障定位研究,定位平均准确率均在85%以上,最高准确率达到100%。该方法具有较强的稳定性和鲁棒性,为模拟电路复合故障定位研究提供了可行性方案。 展开更多
关键词 复合故障定位 注意力机制 复数卷积 特征融合
原文传递
自适应双阻尼小波字典的轴承复合故障诊断方法 被引量:1
19
作者 胡俊锋 赵丽娟 +1 位作者 严雪竹 张龙 《振动与冲击》 北大核心 2025年第7期239-246,共8页
针对强背景噪声下难以准确提取出轴承复合故障中各故障类型有效特征的问题,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和稀疏表征的轴承复合故障诊断方法。该方法首先通过MCKD算法实现复合故障... 针对强背景噪声下难以准确提取出轴承复合故障中各故障类型有效特征的问题,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和稀疏表征的轴承复合故障诊断方法。该方法首先通过MCKD算法实现复合故障的分离,并达到初步增强故障冲击特征的效果;然后进行稀疏表征字典设计先验知识分析,构造与真实故障脉冲响应更加匹配的双阻尼非对称小波参数字典,结合正交匹配追踪算法,稀疏重构出各故障特征;最后对重构分量做包络谱分析,提取轴承故障特征频率。考虑到MCKD算法和非对称小波中的参数选取决定着最终的特征提取效果,使用鲸鱼优化算法实现参数自动优化选取。仿真数据和试验台数据分析结果表明,所提出的方法可有效提取出轴承复合故障中的各类故障成分,且相比常用的单阻尼Laplace小波字典具有一定的优越性。 展开更多
关键词 复合故障 最大相关峭度解卷积(MCKD)算法 双阻尼非对称小波 稀疏分解 特征提取
在线阅读 下载PDF
基于DBO优化MCKD-VMD的齿轮轴承复合故障特征提取
20
作者 马亮 王靖岳 +1 位作者 郑永灿 丁建明 《车辆与动力技术》 2025年第3期45-54,共10页
针对齿轮箱复合故障传输路径复杂,早期故障振动信号微弱,易被背景噪声淹没而特征提取困难等问题,提出了基于蜣螂优化算法(dung beetle optimizer,简称DBO)优化最大相关峭度解卷积(maximum correlated kurtosis deconvolution,简称MCKD)... 针对齿轮箱复合故障传输路径复杂,早期故障振动信号微弱,易被背景噪声淹没而特征提取困难等问题,提出了基于蜣螂优化算法(dung beetle optimizer,简称DBO)优化最大相关峭度解卷积(maximum correlated kurtosis deconvolution,简称MCKD)和变分模态分解(variational mode decomposition,简称VMD)的方法用来提取齿轮箱中齿轮轴承复合故障特征.为实现MCKD和VMD的参数自适应选取,采用DBO对两种算法中的参数进行寻优.首先以包络熵为评价指标,选取MCKD所需的参数组合,利用参数优化的MCKD增强故障特征;其次利用参数优化的VMD对增强信号进行分解,构建多尺度排列熵指标筛选有效模态分量进行重构降噪;最后对重构信号进行包络解调提取故障特征.通过与DBO-MCKD和DBO-MCKD-EEMD两种方法对比分析,仿真信号和齿轮箱中齿轮轴承复合故障模拟实验均验证了该方法可以有效的提取齿轮箱中齿轮轴承复合故障特征. 展开更多
关键词 齿轮箱复合故障 蜣螂优化算法 最大相关峭度解卷积 变分模态分解 多尺度排列熵
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部