1 Introduction Nanshankeng tungsten-tin polymetallic mine,which is located in the eastern Nanling metallogenic belt,is newly discovered by geological investigation and evaluation with prospecting potential(Xiao et
X-ray microanalysis was used to study the elemental composition of the shell of the freshwater testate amoeba Difflugia tuberspinifera Hu et al.,1997 collected from Mulan Lake,Hubei province,China in July 2003.The res...X-ray microanalysis was used to study the elemental composition of the shell of the freshwater testate amoeba Difflugia tuberspinifera Hu et al.,1997 collected from Mulan Lake,Hubei province,China in July 2003.The results show that the shell is composed of ten elements:Si in greater quantity;then Ca and Al;and traces of K,Na,Cl,Fe,Mg,S and P.The analysis of results suggests that D.tuberspinifera in elemental composition appears to occupy a middle position between marine and soil testate amoebae.展开更多
Fine structure and elemental composition of envelopes of 10 taxa of Trachelomonas and Strombomonas from natural freshwater bodies in China were studied and phylogeny of both genera were discussed. The results indicate...Fine structure and elemental composition of envelopes of 10 taxa of Trachelomonas and Strombomonas from natural freshwater bodies in China were studied and phylogeny of both genera were discussed. The results indicate that iron (Fe) and silicon (Si) are the primary mineral elements of the envelopes. Composition of mineral elements was uncorrelated with envelope color, however, it was highly correlated with the microarchitecture of the envelopes. Content of Si was higher than that of Fe in all species of Strombomonas and some species of Trachelomonas with rough surface. In most species of Trachelomonas, especially those with dense and smoothy surface, content of Fe was higher than that of Si. Based on the above results, we propose to assign those species of Strombomonas into Trachelomonas and consider them as a group of the latter. These species were the most primitive among the group with envelopes in Euglenaceae.展开更多
Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectrosc...Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC …展开更多
Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollu...Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chiuensis, Sophora japonica Ailanthus altissima, Syringa oblata and Prunus persica, had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicns and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM30 (particulate matter less than 10 μm in aerodynamic diameter; 98.4%) and PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CASO4. H2O, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4. H2O was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.展开更多
Elemental composition and geochemical characteristics of iron-manganese nodules from nine main soils in China were studied by chemical and multivariate statistical analyses to better understand the reactions and funct...Elemental composition and geochemical characteristics of iron-manganese nodules from nine main soils in China were studied by chemical and multivariate statistical analyses to better understand the reactions and functions of iron-manganese nodules in soils and sediment. Compared to the corresponding soils, Mn, Ba, Cd, Co and Pb had strong accumulation, Ni had moderate accumulation, while Ca, Cu, Fe, Na, P, Sr and Zn accumulated to a minor degree in the iron-manganese nodules. In contrast, Si, Al, K, Mg and Ti were reduced in the iron-manganese nodules. The contents of Ba, Cd, Co, Cu, Ni, Pb and Zn were positively and significantly correlated with that of MnO2 in the iron-manganese nodules, while the contents of Cr, Cu, Ni, Pb and Zn were positively and significantly correlated with that of Fe2O3 in soils. Based on a principle component analysis, the elements of iron-manganese nodules were divided into four groups: 1) Mn, Ba, Cd, Co, Cu, Li, Ni, Pb and Zn that were associated with Mn oxides, 2) Fe, Cr and P that were associated with Fe oxides, 3) Si, K, and Mg that were included in the elemental composition of phyllosilicate, and 4) Ca, Na, Al and Ti that existed in todorokite, birnessite, lithiophorite and phyllosilicate. It was suggested that accumulation, mineralization and specific adsorption were involved in the formation processes of soil iron-manganese nodules.展开更多
Continuous observations of mass concentration and elemental composition of aerosol particles (PM2.5) were conducted at Tongyu, a semi-arid site in Northeast China in the spring of 2006. The average mass concentratio...Continuous observations of mass concentration and elemental composition of aerosol particles (PM2.5) were conducted at Tongyu, a semi-arid site in Northeast China in the spring of 2006. The average mass concentration of PM2.5 at Tongyu station was 260.9±274.4 μg m^-3 during the observation period. Nine dust events were monitored with a mean concentration of 528.0±302.7 μgm^-3. The PM2.5 level during non- dust storm (NDS) period was 111.65±63.37 μg m^-3. High mass concentration shows that fine-size particles pollution was very serious in the semi-arid area in Northeast China. The enrichment factor values for crust elements during the dust storm (DS) period are close to those in the NDS period, while the enrichment factor values for pollution elements during the NDS period are much higher than those in the DS period, showing these elements were from anthropogenic sources. The ratios of dust elements to Fe were relative constant during the DS period. The Ca/Fe ratio in dust aerosols at Tongyu is remarkably different from that observed in other source regions and downwind regions. Meteorological analysis shows that dust events at Tongyu are usually associated with dry, low pressure and high wind speed weather conditions. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongyu, and the northwest direction pathway was the main transport route.展开更多
The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid cond...The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions. Humic acids (HAs) isolated by conventional procedures from CS, TS, and unamended (SO) and sludge amended soils were analysed for elemental (C, H, N, S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible, Fourier transform infrared and fluorescence spectroscopies. With respect to CS, TS had similar pH and total P and K contents, larger dry matter, total organic C, total N and C/N ratio and smaller ash content and electrical conductivity. Amendment with both CS and TS induced a number of modifications in soil properties, including an increase of pH, electrical conductivity, total organic C, total N, and available P. The CS-HA had greater O, total acidity, carboxyl, and phenolic OH group contents and smaller C and H contents than TS-HA. The CS-HA and TS-HA had larger N and S contents, smaller C, O and acidic functional group contents, and lower aromatic polycondensation and humification degrees than SO-HA. Amended soil-HAs showed C, H, N and S contents larger than SO-HA, suggesting that sludge HAs were partially incorporated into soil HAs. These effects were more evident with increasing number of sludge applications.展开更多
In this paper, the Co-free hydrogen storage alloys with the nominal compositions of La0.75R0.05Mg0.20Ni3.40Al0.10(R = La, Nd and Sm) were prepared by induction melting, and then the phase structure and electrochemic...In this paper, the Co-free hydrogen storage alloys with the nominal compositions of La0.75R0.05Mg0.20Ni3.40Al0.10(R = La, Nd and Sm) were prepared by induction melting, and then the phase structure and electrochemical properties of these alloys were comparatively investigated. It is found that the alloys mainly consist of(La, Mg)2Ni7phase, La Ni5 phase and(La, Mg)5Ni19phase.Refinement results further show that Nd substitution for La remarkably promotes the formation of La Ni5 phase, while Sm is beneficial for the formation of(La, Mg)5Ni19phase.At discharge current density of 1,875 m A g-1, the highrate dischargeability(HRD) of alloy electrodes increases by 13.9 % and 6.5 % with La substituted by Nd and Sm,respectively. The electrochemical kinetic measurements reveal that the exchange current density(I0), charge transfer resistance(R) and hydrogen diffusion coefficient(D) for the alloy electrode are all facilitated with Nd and Sm partial substitution for La. Subsequently, a linear correlation between the HRD1875 and the corresponding I0/D is found.展开更多
The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intr...The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M.aeruginosa to different concentration gradients of Fe(Ⅲ) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were:(1) decelerated when the Fe(Ⅲ) concentration was lower than 50 μg/L in the solutions,(2) promoted and positively related to the increase of Fe(Ⅲ) concentration from 100 to 500 μg/L in the solutions over the experimental period, and(3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(Ⅲ) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(Ⅲ)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(Ⅲ) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5according to the functions for different Fe(Ⅲ)concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(Ⅲ) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.展开更多
The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles(PM2.5) collected at Tongliao(Inner Mongolia Autonomous Region, China), a site in Horqin Sand-lan...The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles(PM2.5) collected at Tongliao(Inner Mongolia Autonomous Region, China), a site in Horqin Sand-land in northeast China. During spring 2005, the mass concentration for PM2.5 was (126±71)μg/m^3 in average. Five dust storm events were monitored with higher concentration of (255 ± 77)μg/m^3 in average than the non dusty days of (106 ± 44)μg/m^3. Concentrations for 20 elements were obtained by the PIXE method. Mass concentrations of ALl, Mg, Si, K, Ca, Ti, Mn, and V, which increased with the PM2.5 concentration, were higher than the pollution elements (S, Cl, Zn, Ar, Se, Br, and Pb). Enrichment factor relative to crust material was also calculated, which showed dust trace elements were mainly from earth upper crust and pollution elements were dominated the anthropogenic aerosols. The Si/Al, Ca/Al, and Fe/Al ratios in PM2.5 samples at Tongliao were 4.07, 0.94, and 0.82, respectively, which were remarkably different with those on other source regions, such as "Western desert source region", "North desert source region" and central Asia source. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongliao, but have the similar elemental ratios, implying that elemental signatures for dust aerosol from Horqin Sand-land were different with other regions.展开更多
In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechan...In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechanical performance. However, this issue solved by traditional optimization process via "trial and error" or experiences of domain experts is extremely difficult. Here we propose an approach based on high-throughput simulation combined machine learning to obtain medium entropy alloys with high strength and low cost. This method not only obtains a large amount of data quickly and accurately,but also helps us to determine the relationship between the composition and mechanical properties.The results reveal a vital importance of high-throughput simulation combined machine learning to find best mechanical properties in a wide range of elemental compositions for development of alloys with expected performance.展开更多
The elemental composition of coal and biomass provides significant parameters used in the design of almost all energy conversion systems and projects.The laboratory tests to determine the elemental composition of coal...The elemental composition of coal and biomass provides significant parameters used in the design of almost all energy conversion systems and projects.The laboratory tests to determine the elemental composition of coal and biomass is time-consuming and costly.However,limited research has suggested that there is a correlation between parameters obtained from elemental and proximate analyses of these materials.In this study,some predictive models of the elemental composition of coal and biomass using soft computing and regression analyses have been developed.Thirty-one samples including parameters of elemental and proximate analyses were used during the analyses to develop multiple prediction models.Dependent variables for multiple prediction models were selected as carbon,hydrogen,and oxygen.Using volatile matter,fixed carbon,moisture and ash contents as independent variables,three different prediction models were developed for each dependent parameter using ANFIS,ANN,and MLR.In addition,a routine for selecting the best predictive model was suggested in the study.The reliability of the established models was tested by using various prediction performance indices and the models were found to be satisfactory.Therefore,the developed models can be used to determine the elemental composition of coal and biomass for practical purposes.展开更多
The effects of direct extracts of compost (DEC), aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated bas...The effects of direct extracts of compost (DEC), aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated based on the structure and activity analysis of humic-like substances. AFEC increased cucumber growth most significantly, followed by DEC and NAFEC, which was insignificant compared to the control treatment. Humic-like substances from compost extracts played an important role in promoting cucumber growth. Application of humic-like substances stimulated auxin-like activity and increased chlorophyll content and nitrogen accumulation in plants. The positive auxin-like activity of humic-like substances could be attributed to the relative distribution of special carbon groups, such as those with a large amount of peptidic and carbohydratic groups or with a low content of phenolic groups. In conclusion, the best growth promotion by application of AFEC was mainly attributed to the humic-like substances in the AFEC.展开更多
The Upper Permian Dalan Formation and the Lower Triassic Kangan Formation in the Persian Gulf area are mainly composed of shallow marine facies limestone and dolomite.Two subsurface-cored intervals were investigated i...The Upper Permian Dalan Formation and the Lower Triassic Kangan Formation in the Persian Gulf area are mainly composed of shallow marine facies limestone and dolomite.Two subsurface-cored intervals were investigated in order to understand the original mineralogy and paleoceanic conditions.The decreasing trend of Sr concentration in these deposits shows that aragonite was precipitated during the Late Permian and then gradually changed to calcite toward the Permian-Triassic boundary(PTB).The dissolution rate of aragonite decreased from 60 m below the PTB toward the boundary,with the only exception at 10 m below the Permian-Triassic Boundary(PTB) due to the Permian-Triassic unconformity in this region.The increasing trend of Mg/Ca ratio in a global scale at the end-Permian time shows that the interpreted variation of mineralogy does not result from the change of this ratio.The increasing p(CO2) and decreasing pH are considered to be the main controlling factors.The increase of Ca2+ at the end-Permian time due to the input of meteoric waters is too little to fully compensate this effect.A local maximum of the Si content just at the PTB confirms the input of runoff waters.展开更多
Coal combustion in the domestic stoves, which is common in most parts of the Chinese countryside, can release harmful substances into the air and cause health issues. In this study, particles emitted from laboratory s...Coal combustion in the domestic stoves, which is common in most parts of the Chinese countryside, can release harmful substances into the air and cause health issues. In this study, particles emitted from laboratory stove combustion of the raw powder coals were analyzed for morphologies and chemical compositions by using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX). The coal burning-derived individual particles were classified into two groups: carbonaceous particles (including soot aggregates and organic particles) and non-carbonaceous particles (including sulfate, mineral and metal particles). The non-carbonaceous particles, which constituted a majority of the coal burning-derived emissions, were subdivided into Si-rich, S-rich, K-rich, Ca-rich, and Fe-rich particles according to the elemental compositions. The Si-rich, S-rich and K-rich particles are commonly observed in the coal burning emission. The proportions for particles of different types exhibit obvious coal-issue dependence. Burning of coal with high ash yield could emit more non-carbonaceous particles, and burning of coal with high sulfur content can emit more S-rich particles. By comparing the S-rich particles from this coal burning experiment with those in the atmosphere, we draw a conclusion that some S-rich particles in the atmosphere in China could be mainly sourced from coal combustion.展开更多
This paper seeks to outline the temperature effect on the buckling properties of ultra-thin-walled lenticular collapsible composite tube(LCCT) subjected to axial compression.The buckling tests of the LCCT specimens ...This paper seeks to outline the temperature effect on the buckling properties of ultra-thin-walled lenticular collapsible composite tube(LCCT) subjected to axial compression.The buckling tests of the LCCT specimens subjected to axial compression were carried out on INSTRON-500 N servo-hydraulic machine in dry state and at the temperatures of 25 C, 100 C and 80 C. The load–displacement curves and buckling initiation loads were measured and the buckling initiation mechanism was discussed from experimental observations. Experiments show that the buckling initiation load, on average, is only about 2.2% greater at the low temperature of 80 C than at the room temperature of 25 C due to the material hardening, demonstrating an insignificant increase in the buckling initiation load, whereas it is about 19.5% lower at the high temperature of 100 C than at the room temperature owing to the material softening, implying a significant decrease in the buckling initiation load. The failure mode of the LCCT in axial compression tests at three different temperatures can be reckoned to be characteristic of the buckling initiation and propagation around the central region until rupture. The finite element(FE) model is presented to simulate the buckling initiation mechanism based on the eigenvalue-based methodology. Good correlation between experimental and numerical results is achieved.展开更多
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d...The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.展开更多
Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao(36.15°N, 120.49°E), a city located in Eastern China. The size, morpho...Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao(36.15°N, 120.49°E), a city located in Eastern China. The size, morphology, and elemental composition of the particles were quantified with a scanning electron microscope equipped with an energy dispersive X-ray instrument(SEM–EDX). The particles appeared in various shapes, and their size mainly varied from 0.4to 10 μm, with the mean diameters of 0.5, 1.5, and 1.0 μm before, during, and after the dust storm, respectively. The critical size of the mineral particles settling on the surface in the current case was about 0.3–0.4 μm before the dust storm and about 0.5–0.7 μm during the dust storm. Particles that appeared in high concentration but were smaller than the critical size deposited onto the surface at a small number flux. The elements Al, Si and Mg were frequently detected in all samples, indicating the dominance of mineral particles. The frequency of Al in particles collected before the dust storm was significantly lower than for those collected during and after the dust storm. The frequencies of Cl and Fe did not show obvious changes, while those of S, K and Ca decreased after the dust arrival. These results indicate that the dust particles deposited onto the surface were less influenced by anthropogenic pollutants in terms of particle number.展开更多
1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include duni...1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include dunites,展开更多
基金supported by China Geological Survey (1212011120813 1212011120811+2 种基金 1212010881305 121201053300312120114015701 and DD20160037)
文摘1 Introduction Nanshankeng tungsten-tin polymetallic mine,which is located in the eastern Nanling metallogenic belt,is newly discovered by geological investigation and evaluation with prospecting potential(Xiao et
文摘X-ray microanalysis was used to study the elemental composition of the shell of the freshwater testate amoeba Difflugia tuberspinifera Hu et al.,1997 collected from Mulan Lake,Hubei province,China in July 2003.The results show that the shell is composed of ten elements:Si in greater quantity;then Ca and Al;and traces of K,Na,Cl,Fe,Mg,S and P.The analysis of results suggests that D.tuberspinifera in elemental composition appears to occupy a middle position between marine and soil testate amoebae.
文摘Fine structure and elemental composition of envelopes of 10 taxa of Trachelomonas and Strombomonas from natural freshwater bodies in China were studied and phylogeny of both genera were discussed. The results indicate that iron (Fe) and silicon (Si) are the primary mineral elements of the envelopes. Composition of mineral elements was uncorrelated with envelope color, however, it was highly correlated with the microarchitecture of the envelopes. Content of Si was higher than that of Fe in all species of Strombomonas and some species of Trachelomonas with rough surface. In most species of Trachelomonas, especially those with dense and smoothy surface, content of Fe was higher than that of Si. Based on the above results, we propose to assign those species of Strombomonas into Trachelomonas and consider them as a group of the latter. These species were the most primitive among the group with envelopes in Euglenaceae.
文摘Twenty-three progressive extractions were performed to study individual humic acids (HAs) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC …
基金The National Natural Science Foundation of China (No. 30570338) the Natural Science Foundation of Beijing (No. 6053026) andthe Ministry of Education, China(No. 20040027020).
文摘Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chiuensis, Sophora japonica Ailanthus altissima, Syringa oblata and Prunus persica, had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicns and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM30 (particulate matter less than 10 μm in aerodynamic diameter; 98.4%) and PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CASO4. H2O, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4. H2O was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.
基金Project supported by the National Natural Science Foundation of China (No. 40101017)the Doctor Foundation of the Ministry of Education of China (No. 2002050411).
文摘Elemental composition and geochemical characteristics of iron-manganese nodules from nine main soils in China were studied by chemical and multivariate statistical analyses to better understand the reactions and functions of iron-manganese nodules in soils and sediment. Compared to the corresponding soils, Mn, Ba, Cd, Co and Pb had strong accumulation, Ni had moderate accumulation, while Ca, Cu, Fe, Na, P, Sr and Zn accumulated to a minor degree in the iron-manganese nodules. In contrast, Si, Al, K, Mg and Ti were reduced in the iron-manganese nodules. The contents of Ba, Cd, Co, Cu, Ni, Pb and Zn were positively and significantly correlated with that of MnO2 in the iron-manganese nodules, while the contents of Cr, Cu, Ni, Pb and Zn were positively and significantly correlated with that of Fe2O3 in soils. Based on a principle component analysis, the elements of iron-manganese nodules were divided into four groups: 1) Mn, Ba, Cd, Co, Cu, Li, Ni, Pb and Zn that were associated with Mn oxides, 2) Fe, Cr and P that were associated with Fe oxides, 3) Si, K, and Mg that were included in the elemental composition of phyllosilicate, and 4) Ca, Na, Al and Ti that existed in todorokite, birnessite, lithiophorite and phyllosilicate. It was suggested that accumulation, mineralization and specific adsorption were involved in the formation processes of soil iron-manganese nodules.
基金National Basic Research Program of China (Grant No. 2006CB400501)the Hundred Talents Program (Aerosol Characteristics and its Climatic Impact) of the Chinese Academy of Sciences, and National Natural Science Foun- dation of China (Grant Nos. 40675074, 40645028)
文摘Continuous observations of mass concentration and elemental composition of aerosol particles (PM2.5) were conducted at Tongyu, a semi-arid site in Northeast China in the spring of 2006. The average mass concentration of PM2.5 at Tongyu station was 260.9±274.4 μg m^-3 during the observation period. Nine dust events were monitored with a mean concentration of 528.0±302.7 μgm^-3. The PM2.5 level during non- dust storm (NDS) period was 111.65±63.37 μg m^-3. High mass concentration shows that fine-size particles pollution was very serious in the semi-arid area in Northeast China. The enrichment factor values for crust elements during the dust storm (DS) period are close to those in the NDS period, while the enrichment factor values for pollution elements during the NDS period are much higher than those in the DS period, showing these elements were from anthropogenic sources. The ratios of dust elements to Fe were relative constant during the DS period. The Ca/Fe ratio in dust aerosols at Tongyu is remarkably different from that observed in other source regions and downwind regions. Meteorological analysis shows that dust events at Tongyu are usually associated with dry, low pressure and high wind speed weather conditions. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongyu, and the northwest direction pathway was the main transport route.
文摘The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions. Humic acids (HAs) isolated by conventional procedures from CS, TS, and unamended (SO) and sludge amended soils were analysed for elemental (C, H, N, S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible, Fourier transform infrared and fluorescence spectroscopies. With respect to CS, TS had similar pH and total P and K contents, larger dry matter, total organic C, total N and C/N ratio and smaller ash content and electrical conductivity. Amendment with both CS and TS induced a number of modifications in soil properties, including an increase of pH, electrical conductivity, total organic C, total N, and available P. The CS-HA had greater O, total acidity, carboxyl, and phenolic OH group contents and smaller C and H contents than TS-HA. The CS-HA and TS-HA had larger N and S contents, smaller C, O and acidic functional group contents, and lower aromatic polycondensation and humification degrees than SO-HA. Amended soil-HAs showed C, H, N and S contents larger than SO-HA, suggesting that sludge HAs were partially incorporated into soil HAs. These effects were more evident with increasing number of sludge applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 51171165 and 21303157)the Natural Science Foundation of Hebei Province (Nos. B2012203027, B2012203104, and B2014203114)+1 种基金the China Postdoctoral Science Foundation Project (No. 2013M541201)the Research Fund for the Doctoral Program of Higher Education of China (No. 20131333120008)
文摘In this paper, the Co-free hydrogen storage alloys with the nominal compositions of La0.75R0.05Mg0.20Ni3.40Al0.10(R = La, Nd and Sm) were prepared by induction melting, and then the phase structure and electrochemical properties of these alloys were comparatively investigated. It is found that the alloys mainly consist of(La, Mg)2Ni7phase, La Ni5 phase and(La, Mg)5Ni19phase.Refinement results further show that Nd substitution for La remarkably promotes the formation of La Ni5 phase, while Sm is beneficial for the formation of(La, Mg)5Ni19phase.At discharge current density of 1,875 m A g-1, the highrate dischargeability(HRD) of alloy electrodes increases by 13.9 % and 6.5 % with La substituted by Nd and Sm,respectively. The electrochemical kinetic measurements reveal that the exchange current density(I0), charge transfer resistance(R) and hydrogen diffusion coefficient(D) for the alloy electrode are all facilitated with Nd and Sm partial substitution for La. Subsequently, a linear correlation between the HRD1875 and the corresponding I0/D is found.
基金supported by the China National Major Project of Water Pollution Control(No.2012ZX07313001-002)JSPS Postdoctoral Fellow Program(No.P15353)+2 种基金Shaanxi Provincial Program for ScienceTechnology Development(No.2013KJXX-55)Program for Innovative Research Team(No.2013KCT-13)
文摘The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M.aeruginosa to different concentration gradients of Fe(Ⅲ) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were:(1) decelerated when the Fe(Ⅲ) concentration was lower than 50 μg/L in the solutions,(2) promoted and positively related to the increase of Fe(Ⅲ) concentration from 100 to 500 μg/L in the solutions over the experimental period, and(3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(Ⅲ) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(Ⅲ)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(Ⅲ) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5according to the functions for different Fe(Ⅲ)concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(Ⅲ) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.
文摘The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles(PM2.5) collected at Tongliao(Inner Mongolia Autonomous Region, China), a site in Horqin Sand-land in northeast China. During spring 2005, the mass concentration for PM2.5 was (126±71)μg/m^3 in average. Five dust storm events were monitored with higher concentration of (255 ± 77)μg/m^3 in average than the non dusty days of (106 ± 44)μg/m^3. Concentrations for 20 elements were obtained by the PIXE method. Mass concentrations of ALl, Mg, Si, K, Ca, Ti, Mn, and V, which increased with the PM2.5 concentration, were higher than the pollution elements (S, Cl, Zn, Ar, Se, Br, and Pb). Enrichment factor relative to crust material was also calculated, which showed dust trace elements were mainly from earth upper crust and pollution elements were dominated the anthropogenic aerosols. The Si/Al, Ca/Al, and Fe/Al ratios in PM2.5 samples at Tongliao were 4.07, 0.94, and 0.82, respectively, which were remarkably different with those on other source regions, such as "Western desert source region", "North desert source region" and central Asia source. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongliao, but have the similar elemental ratios, implying that elemental signatures for dust aerosol from Horqin Sand-land were different with other regions.
基金supported financially by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51621004)the National Natural Science Foundation of China (Nos. 51871092, 11772122, 51625404, 51771232+5 种基金51671217)the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No. 71865015)the State Key Laboratory of Powder Metallurgythe National Key Research and Development Program of China (Nos. 2016YFB0700300 and 2016YFB1100103)support of the U.S. Army Research Office Project (Nos. W911NF-13-1-0438 and W911NF-19-2-0049) with the program managers,Drs. M.P. Bakas,S.N. Mathaudhusupport from the National Science Foundation (Nos. DMR-1611180 and 1809640)with the program directors,Drs. J. Yang,J.G. Shiflet,and D. Farkas。
文摘In medium/high entropy alloys, their mechanical properties are strongly dependent on the chemicalelemental composition. Thus, searching for optimum elemental composition remains a critical issue to maximize the mechanical performance. However, this issue solved by traditional optimization process via "trial and error" or experiences of domain experts is extremely difficult. Here we propose an approach based on high-throughput simulation combined machine learning to obtain medium entropy alloys with high strength and low cost. This method not only obtains a large amount of data quickly and accurately,but also helps us to determine the relationship between the composition and mechanical properties.The results reveal a vital importance of high-throughput simulation combined machine learning to find best mechanical properties in a wide range of elemental compositions for development of alloys with expected performance.
文摘The elemental composition of coal and biomass provides significant parameters used in the design of almost all energy conversion systems and projects.The laboratory tests to determine the elemental composition of coal and biomass is time-consuming and costly.However,limited research has suggested that there is a correlation between parameters obtained from elemental and proximate analyses of these materials.In this study,some predictive models of the elemental composition of coal and biomass using soft computing and regression analyses have been developed.Thirty-one samples including parameters of elemental and proximate analyses were used during the analyses to develop multiple prediction models.Dependent variables for multiple prediction models were selected as carbon,hydrogen,and oxygen.Using volatile matter,fixed carbon,moisture and ash contents as independent variables,three different prediction models were developed for each dependent parameter using ANFIS,ANN,and MLR.In addition,a routine for selecting the best predictive model was suggested in the study.The reliability of the established models was tested by using various prediction performance indices and the models were found to be satisfactory.Therefore,the developed models can be used to determine the elemental composition of coal and biomass for practical purposes.
基金Supported by the Ministry of Agriculture Public Benefit Research Foundation of China (No. 201103004)the National Key Technology R&D Program of China (No. 2010AA10Z401)
文摘The effects of direct extracts of compost (DEC), aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated based on the structure and activity analysis of humic-like substances. AFEC increased cucumber growth most significantly, followed by DEC and NAFEC, which was insignificant compared to the control treatment. Humic-like substances from compost extracts played an important role in promoting cucumber growth. Application of humic-like substances stimulated auxin-like activity and increased chlorophyll content and nitrogen accumulation in plants. The positive auxin-like activity of humic-like substances could be attributed to the relative distribution of special carbon groups, such as those with a large amount of peptidic and carbohydratic groups or with a low content of phenolic groups. In conclusion, the best growth promotion by application of AFEC was mainly attributed to the humic-like substances in the AFEC.
基金supported by a grant from the University of Tehranthe vicepresident of the Research and Technology of the University of Tehran for the financial support+1 种基金extend our appreciation to the POGC(Pars Oil and Gas Company of Iran)MAPSA(Abdal Industrial Projects Management Company)for the sponsoring,data preparation,and also permission to publish this study
文摘The Upper Permian Dalan Formation and the Lower Triassic Kangan Formation in the Persian Gulf area are mainly composed of shallow marine facies limestone and dolomite.Two subsurface-cored intervals were investigated in order to understand the original mineralogy and paleoceanic conditions.The decreasing trend of Sr concentration in these deposits shows that aragonite was precipitated during the Late Permian and then gradually changed to calcite toward the Permian-Triassic boundary(PTB).The dissolution rate of aragonite decreased from 60 m below the PTB toward the boundary,with the only exception at 10 m below the Permian-Triassic Boundary(PTB) due to the Permian-Triassic unconformity in this region.The increasing trend of Mg/Ca ratio in a global scale at the end-Permian time shows that the interpreted variation of mineralogy does not result from the change of this ratio.The increasing p(CO2) and decreasing pH are considered to be the main controlling factors.The increase of Ca2+ at the end-Permian time due to the input of meteoric waters is too little to fully compensate this effect.A local maximum of the Si content just at the PTB confirms the input of runoff waters.
基金supported by the National Basic Research Program of China (973 Program) (No. 2013CB228503)the Projects of International Cooperation and Exchanges NSFC (No. 41571130031)
文摘Coal combustion in the domestic stoves, which is common in most parts of the Chinese countryside, can release harmful substances into the air and cause health issues. In this study, particles emitted from laboratory stove combustion of the raw powder coals were analyzed for morphologies and chemical compositions by using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX). The coal burning-derived individual particles were classified into two groups: carbonaceous particles (including soot aggregates and organic particles) and non-carbonaceous particles (including sulfate, mineral and metal particles). The non-carbonaceous particles, which constituted a majority of the coal burning-derived emissions, were subdivided into Si-rich, S-rich, K-rich, Ca-rich, and Fe-rich particles according to the elemental compositions. The Si-rich, S-rich and K-rich particles are commonly observed in the coal burning emission. The proportions for particles of different types exhibit obvious coal-issue dependence. Burning of coal with high ash yield could emit more non-carbonaceous particles, and burning of coal with high sulfur content can emit more S-rich particles. By comparing the S-rich particles from this coal burning experiment with those in the atmosphere, we draw a conclusion that some S-rich particles in the atmosphere in China could be mainly sourced from coal combustion.
基金supported by the National Natural Science Foundation of China (Nos. 51075019 and 51375033)Aeronautical Science Foundation (No. 20095251024) of Chinathe Fundamental Research Funds for the Central Universities (No. YWF-13-T-RSC-121) of China
文摘This paper seeks to outline the temperature effect on the buckling properties of ultra-thin-walled lenticular collapsible composite tube(LCCT) subjected to axial compression.The buckling tests of the LCCT specimens subjected to axial compression were carried out on INSTRON-500 N servo-hydraulic machine in dry state and at the temperatures of 25 C, 100 C and 80 C. The load–displacement curves and buckling initiation loads were measured and the buckling initiation mechanism was discussed from experimental observations. Experiments show that the buckling initiation load, on average, is only about 2.2% greater at the low temperature of 80 C than at the room temperature of 25 C due to the material hardening, demonstrating an insignificant increase in the buckling initiation load, whereas it is about 19.5% lower at the high temperature of 100 C than at the room temperature owing to the material softening, implying a significant decrease in the buckling initiation load. The failure mode of the LCCT in axial compression tests at three different temperatures can be reckoned to be characteristic of the buckling initiation and propagation around the central region until rupture. The finite element(FE) model is presented to simulate the buckling initiation mechanism based on the eigenvalue-based methodology. Good correlation between experimental and numerical results is achieved.
基金supported by the National Key Basic Research Program of China(No.2014CB441003)the National Key Research and Development of China(No.2016YFD0200302)
文摘The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.
基金supported by the National Basic Research Program of China (No.2013CB228503)the National Natural Science Foundation of China (Nos.91544214,21190052,41121004,41541038)the Education Bureau of Hebei Province for Excellent Young Scholars (No.YQ2014020)
文摘Dry-deposited particles were collected during the passage of an extremely strong dust storm in March, 2010 at a coastal site in Qingdao(36.15°N, 120.49°E), a city located in Eastern China. The size, morphology, and elemental composition of the particles were quantified with a scanning electron microscope equipped with an energy dispersive X-ray instrument(SEM–EDX). The particles appeared in various shapes, and their size mainly varied from 0.4to 10 μm, with the mean diameters of 0.5, 1.5, and 1.0 μm before, during, and after the dust storm, respectively. The critical size of the mineral particles settling on the surface in the current case was about 0.3–0.4 μm before the dust storm and about 0.5–0.7 μm during the dust storm. Particles that appeared in high concentration but were smaller than the critical size deposited onto the surface at a small number flux. The elements Al, Si and Mg were frequently detected in all samples, indicating the dominance of mineral particles. The frequency of Al in particles collected before the dust storm was significantly lower than for those collected during and after the dust storm. The frequencies of Cl and Fe did not show obvious changes, while those of S, K and Ca decreased after the dust arrival. These results indicate that the dust particles deposited onto the surface were less influenced by anthropogenic pollutants in terms of particle number.
基金funded by the National Natural Science Foundation of China (Grant No. 41173077)Chinese science and technology basic conditions platform project of Ministryof Science and Technology (2005DKA21406-9)Science and technology plan projects in guangxi(AD16450001)
文摘1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include dunites,