Aluminum matrix composites(AMCs) reinforced with graphene nanoplatelets(GNPs) were fabricated by using an accumulative roll-compositing(ARC) process.Microstructure, mechanical and electrical properties of the nanostru...Aluminum matrix composites(AMCs) reinforced with graphene nanoplatelets(GNPs) were fabricated by using an accumulative roll-compositing(ARC) process.Microstructure, mechanical and electrical properties of the nanostructured AMCs were characterized. The results showed that small addition(0.2 vol% and 0.5 vol%) of GNPs can lead to a simultaneous increase in the tensile strength and ductility of the GNPs/Al nanocomposites, as compared with the same processed pure Al. With increasing GNPs content, the tensile strength of the GNPs/Al nanocomposites can be enhanced to 387 MPa with retained elongation of 15%. Meanwhile, the GNPs/Al nanocomposites exhibited a good electrical conductivity of77.8%–86.1% that of annealed pure Al. The excellent properties(high strength, high ductility and high conductivity) of the GNPs/Al are associated with the particular ARC process, which facilitates the uniform dispersion of GNPs in the matrix and formation of ultrafine-grained Al matrix. The strengthening and toughening of the GNPs/Al nanocomposites were discussed considering different mechanisms and the unique effect of GNPs.展开更多
Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode ...Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.展开更多
Lightweight,high-modulus structural materials are highly desired in many applications like aerospace,automobile and biomedical instruments.As the lightest metallic structural material,magnesium(Mg)has great potential ...Lightweight,high-modulus structural materials are highly desired in many applications like aerospace,automobile and biomedical instruments.As the lightest metallic structural material,magnesium(Mg)has great potential but is limited by its low intrinsic Young’s modulus.This paper reviews the investigations on high-modulus Mg-based materials during the last decades.The nature of elastic modulus is introduced,and typical high-modulus Mg alloys and Mg matrix composites are reviewed.Specifically,Mg alloys enhance Young’s modulus of pure Mg mainly by introducing suitable alloying elements to promote the precipitation of high-modulus second phases in the alloy system.Differently,Mg matrix composites improve Young’s modulus by incorporating high-modulus particles,whiskers and fibers into the Mg matrix.The modulus strengthening effectiveness brought by the two approaches is compared,and Mg matrix composites stand out as a more promising solution.In addition,two well-accepted modulus prediction models(Halpin-Tsai and Rule of mixtures(ROM))for different Mg matrix composites are reviewed.The effects of reinforcement type,size,volume fraction and interfacial bonding condition on the modulus of Mg matrix composites are discussed.Finally,the existing challenges and development trends of high-modulus Mg-based materials are proposed and prospected.展开更多
It is showed that there are Ti 3Al, Ti 2Cu and β phase in the interface of Ti/Ti Al composites reinforced with Y 2O 3 Cr composite soft coated Ti fiber, and that interface bonding is intact. Bending strength ...It is showed that there are Ti 3Al, Ti 2Cu and β phase in the interface of Ti/Ti Al composites reinforced with Y 2O 3 Cr composite soft coated Ti fiber, and that interface bonding is intact. Bending strength of the composites can be increased by 26%, to 709 MPa, and bending deflection increased slightly compared with the Ti/Ti Al composites reinforced by Ti fibers coated with Y 2O 3.展开更多
Benefiting from excellent mechanical properties and low density,cellular ceramic structures(CCSs)are competitive candidates as structural components.However,inherent brittleness from strong chemical bonds among atoms ...Benefiting from excellent mechanical properties and low density,cellular ceramic structures(CCSs)are competitive candidates as structural components.However,inherent brittleness from strong chemical bonds among atoms extremely impeded CCSs'application.Natural materials occupied outstanding strength and toughness simultaneously due to the dual-phase interpenetrated structure.Inspired by natural materials,it was proposed to fabricate coating covered and fulfilled polyurea/CCS interpenetrated composites(C/CCSs and B/CCSs)to circumvent the brittleness of 3D-printed Al_(2)O_(3)CCSs.It was demonstrated that polyurea coating had less effect on the compressive strength of C/CCSs but tremendously improved their energy-absorbing ability.The energy-absorbing ability of C/CCSs was improved from26.48-52.57 kJ·m^(-3)of CCSs to 1.04-1.89 MJ·m^(-3)because of the extended plateau stage.Furthermore,compressive strength and energy-absorbing ability of B/CCSs were strengthened to 1.33-1.36 and 2.84-4.61 times of C/CCSs,respectively.Besides,failure mode of C/CCSs changed from localized deformation to fracturing entirely with the increase in relative density of CCSs inside,which was the same as that of CCSs.However,with the help of polyurea coating,C/CCSs were still intact at strains up to60%,which would neve r fail catastrophically as CCSs at low strains.B/CCSs tended to fracture as a whole,which was not influenced by relative density of pristine CCSs.It was believed that this work provided a creative way to circumvent the brittleness of CCSs and improve their mechanical performances.展开更多
Nowadays,digital images can be easily tampered due to the availability of powerful image processing software.As digital cameras continue to replace their analog counterparts,the importance of authenticating digital im...Nowadays,digital images can be easily tampered due to the availability of powerful image processing software.As digital cameras continue to replace their analog counterparts,the importance of authenticating digital images,identifying their sources,and detecting forgeries is increasing.Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature.Image compositing is the most common form of digital tampering.Assuming that image compositing operations affect the inherent statistics of the image,we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain.The generalized Gaussian model(CGD)is employed to describe the marginal distribution of wavelet coefficients of images,and the parameters of GGD are obtained using maximumlikelihood estimator.The statistical features include GGD parameters,prediction error,mean,variance,skewness,and kurtosis at each wavelet detail subband.Then,these feature vectors are used to discriminate between natural images and composite images using support vector machine(SVM).To evaluate the performance of our proposed method,we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset,and achieved a detection accuracy of 92%and 79%,respectively.The detection performance of our method is better than that of the method using camera response function on the same dataset.展开更多
In this paper, four widely used temporal compositing algorithms, i.e.median, maximum NDVI, medoid, and weighted scoring-basedalgorithms, were evaluated for annual land cover classification usingmonthly Landsat time se...In this paper, four widely used temporal compositing algorithms, i.e.median, maximum NDVI, medoid, and weighted scoring-basedalgorithms, were evaluated for annual land cover classification usingmonthly Landsat time series data. Four study areas located in California,Texas, Kansas, and Minnesota, USA were selected for image compositingand land cover classification. Results indicated that images compositedusing weighted scoring-based algorithms have the best spatial fidelitycompared to other three algorithms. In addition, the weighted scoringbasedalgorithms have superior classification accuracy, followed bymedian, maximum NDVI, and medoid in descending order. However, themedian algorithm has a significant advantage in computational efficiencywhich was ~70 times that of weighted scoring-based algorithms, andwith overall classification accuracy just slightly lower (~0.13% onaverage) than weighted scoring-based algorithms. Therefore, werecommended the weighted scoring-based compositing algorithms forsmall area land cover mapping, and median compositing algorithm forthe land cover mapping of large area considering the balance betweencomputational complexity and classification accuracy. The findings of thisstudy provide insights into the performance difference between variouscompositing algorithms, and have potential uses for the selection ofpixel-based image compositing technique adopted for land covermapping based on Landsat time series data.展开更多
KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to eva...KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI).展开更多
With the increasing of computing ability,large-scale simulations have been generating massive amounts of data in aerodynamics.Sort-last parallel rendering is the most classical image compositing method for large-scale...With the increasing of computing ability,large-scale simulations have been generating massive amounts of data in aerodynamics.Sort-last parallel rendering is the most classical image compositing method for large-scale scientific visualization.However,in the stage of image compositing,the sort-last method may suffer from scalability problem on large-scale processors.Existing image compositing algorithms tend to perform well in certain situations.For instance,Direct Send is well on small and medium scale;Radix-k gets well performance only when the k-value is appropriate and so on.In this paper,we propose a novel method named mSwap for scientific visualization in aerodynamics,which uses the best scale of processors to make sure its performance at the best.mSwap groups the processors that we can use with a(m,k)table,which records the best combination of m(the number of processors in subgroup of each group)and k(the number of processors in each group).Then in each group,using a m-ary tree to composite the image for reducing the communication of processors.Finally,the image is composited between different groups to generate the final image.The performance and scalability of our mSwap method is demonstrated through experiments with thousands of processors.展开更多
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the...Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.展开更多
In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires...In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation.展开更多
Installing internal bulkheads in a composite bucket foundation alters the rotational symmetry characteristic of a single-compartment bucket foundation,consequently influencing the stress distribution within the bucket...Installing internal bulkheads in a composite bucket foundation alters the rotational symmetry characteristic of a single-compartment bucket foundation,consequently influencing the stress distribution within the bucket and surrounding soil.During the seabed penetration of a spudcan from a jack-up wind turbine installation vessel,an angle may form between the spudcan’s axis and the axis of symmetry of the adjacent composite bucket foundation in the horizontal plane.Such a misalignment may affect load distribution and the non-uniform interaction between the foundation,soil,and spudcan,ultimately influencing the foundation’s stability.This study employs physical model tests to ascertain the trends in end resistance during spudcan penetration in sand,the extent of soil disturbance,and the backflow condition.The finite element coupled Eulerian-Lagrangian method is validated and utilized to determine the range of penetration angles that induce alterations in the maximum vertical displacement and tilt rate of the composite bucket foundation in sand.The differential contact stress distribution at the base of the bucket is analyzed,with qualitative criteria for sand backflow provided.Findings demonstrate that the maximum vertical displacement and tilt rate of the composite bucket foundation display a“wave-like”variation with the increasing spudcan penetration angle,peaking when the angle between the spudcan and bulkhead is the smallest.Stress distribution is predominantly concentrated at the base and apex of the bucket,becoming increasingly uneven as the penetration angle deviates from the foundation’s symmetry axis.The maximum stress gradually shifts to the junction of the bulkhead and bucket bottom on the side with the shortest net distance from the spudcan.Considering the in-place stability and stress state of the composite bucket foundation is therefore imperative,and particular attention should be paid to the foundation’s state when the angle between the spudcan and bulkhead is small.展开更多
Nail changes following upper extremity transplantation(UET)cannot be overlooked as they possess diagnostic and prognostic relevance in allotransplantation of upper limbs.This comprehensive review explores nail and nai...Nail changes following upper extremity transplantation(UET)cannot be overlooked as they possess diagnostic and prognostic relevance in allotransplantation of upper limbs.This comprehensive review explores nail and nail bed related changes encountered in UET recipients in the literature.The differential diagnosis of nail abnormalities in UET includes a wide range of systemic,local and iatrogenic conditions other than immune responses to the allograft.It requires interdisciplinary evaluation by primary transplant surgeons,pathologists,dermatologists and immunologists.The possible underlying mechanisms of nail pathology in UET and the management are discussed.It also underscores the importance of onychodystrophy and need for timely intervention and to improve outcomes in UET recipients.展开更多
Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined sp...Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.展开更多
Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(EN...Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.展开更多
Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied....Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods.展开更多
Extremely low lattice thermal conductivity is always the pursuit of thermoelectric materials research.In this work,we reported an exceptional effect of Ag2S addition in MnTe,an emerging promising midtemperature thermo...Extremely low lattice thermal conductivity is always the pursuit of thermoelectric materials research.In this work,we reported an exceptional effect of Ag2S addition in MnTe,an emerging promising midtemperature thermoelectric material,to enable the realization of minimum lattice thermal conductivity,namely-0.4 Wm^(-1) K^(-1).Such a low lattice thermal conductivity is guaranteed by the incorporation of in-situ formed Ag rich phase(Ag2Te)with ultralow lattice thermal conductivity and further scattering of phonons from the partial doping effects induced point defects and boundaries between various phases.Apart from the dramatically decreased lattice thermal conductivity,the partial doping of Ag and S simultaneously enhance the electrical conductivity,further contributing to enhanced thermoelectric performance.Meanwhile,an inverse sign of Seebeck and Hall coefficient was observed and rationalized by the influence of highly electron-conductive Ag_(2)Te phase.Thanks to the synergetic modulation of electrical and thermal transport properties by in-situ formed composite,a high ZT value of 1.1 was achieved in MnTe based thermoelectric materials,which also demonstrates the importance of compositing approaches to design state-of-the-art thermoelectric materials.展开更多
The increasing availability of freely accessible remote sensing data has been crucial for improved global monitoring studies.Multisource image combination is a common approach for overcoming a major limitation associa...The increasing availability of freely accessible remote sensing data has been crucial for improved global monitoring studies.Multisource image combination is a common approach for overcoming a major limitation associated with single-sensor data sources,which cannot provide adequate observations to fill data gaps arising from cloud contamination,shadows,and other atmospheric effects.In particular,image compositing is often used to generate clear view images over a large area.For example,the best available pixel(BAP)method has been proposed to construct clear view and spatially contiguous composites based on pixellevel quality rules.For any location with a bad observation,this method searches observations acquired in other dates and uses the one with the highest score to replace the contaminated observation.This,however,can lead to artificially large discontinuities along the edge of a filled area,which is typically caused by large phenological differences among the observations considered.To mitigate this issue,we developed a multifactor weighting(MFW)method for constructing clear view composites with a higher level of spatial continuity and radiometric consistency than those produced using the BAP method.Assessments over 4 study sites selected from different climate zones in China demonstrated that the composites produced using the MFW method were more consistent with reference images than those generated using the BAP method.Spectral agreements between MFW composites and the reference(R=0.78 to 0.95)were generally higher than the agreements between BAP composites and the reference(R=0.65 to 0.93).These results demonstrated that the proposed MFW method can provide a promising strategy for constructing clear view,seamless,and radiometrically consistent image composites for large-scale applications.展开更多
Quaternary chalcogenides are viewed as a class of potential thermoelectric materials due to their good thermoelectric performance in the medium temperature region.In this work,carbon nanotubes(CNTs)with varying weight...Quaternary chalcogenides are viewed as a class of potential thermoelectric materials due to their good thermoelectric performance in the medium temperature region.In this work,carbon nanotubes(CNTs)with varying weight percentages are composited into the quaternary chalcogenide Cu_(2.1)Mn_(0.9)SnSe_(4)(CMTS)using a technique that combines ball-milling and hot-pressing,and the effect of CNTs on the thermoelectric performance of CMTS is investigated.The compositing of CNTs results in an increase in the intrinsic defects of CMTS,thereby enhancing the electrical conductivities of the composited samples.Besides,the addition of CNTs introduces various phonon scattering mechanisms,effectively restraining the lattice thermal conductivities of the composited samples,particularly in the low to medium temperature range.Ultimately,owing to the concurrent optimization of the power factor and thermal conductivity,the x=0.25 sample achieves a zT value of 0.37 at 673 K.The compositing of highly conductive secondary phase is recognized as a viable approach for the simultaneous enhancement of the thermoelectric properties of materials.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51371128)the Fundamental Research Funds for the Central Universities of China(No.2042017KF0190)。
文摘Aluminum matrix composites(AMCs) reinforced with graphene nanoplatelets(GNPs) were fabricated by using an accumulative roll-compositing(ARC) process.Microstructure, mechanical and electrical properties of the nanostructured AMCs were characterized. The results showed that small addition(0.2 vol% and 0.5 vol%) of GNPs can lead to a simultaneous increase in the tensile strength and ductility of the GNPs/Al nanocomposites, as compared with the same processed pure Al. With increasing GNPs content, the tensile strength of the GNPs/Al nanocomposites can be enhanced to 387 MPa with retained elongation of 15%. Meanwhile, the GNPs/Al nanocomposites exhibited a good electrical conductivity of77.8%–86.1% that of annealed pure Al. The excellent properties(high strength, high ductility and high conductivity) of the GNPs/Al are associated with the particular ARC process, which facilitates the uniform dispersion of GNPs in the matrix and formation of ultrafine-grained Al matrix. The strengthening and toughening of the GNPs/Al nanocomposites were discussed considering different mechanisms and the unique effect of GNPs.
基金This work received financial support from the National Natural Science Foundation of China(Grant Nos.U23A20574,52250010,and 52201242)the 261 Project MIIT,the Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2242022R40018)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB75).
文摘Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.
基金supported by“National Key Research&Development Program of China”(Grant No.2021YFB3703300)“National Natural Science Foundation of China”(Grant Nos.51971075,51971078,51871074,and51671066)+1 种基金“National Natural Science Foundation for Young Scientists of China”(Grant No.51801042)“Fundamental Research Funds for the Central Universities”(Grant No.FRFCU5710000918)。
文摘Lightweight,high-modulus structural materials are highly desired in many applications like aerospace,automobile and biomedical instruments.As the lightest metallic structural material,magnesium(Mg)has great potential but is limited by its low intrinsic Young’s modulus.This paper reviews the investigations on high-modulus Mg-based materials during the last decades.The nature of elastic modulus is introduced,and typical high-modulus Mg alloys and Mg matrix composites are reviewed.Specifically,Mg alloys enhance Young’s modulus of pure Mg mainly by introducing suitable alloying elements to promote the precipitation of high-modulus second phases in the alloy system.Differently,Mg matrix composites improve Young’s modulus by incorporating high-modulus particles,whiskers and fibers into the Mg matrix.The modulus strengthening effectiveness brought by the two approaches is compared,and Mg matrix composites stand out as a more promising solution.In addition,two well-accepted modulus prediction models(Halpin-Tsai and Rule of mixtures(ROM))for different Mg matrix composites are reviewed.The effects of reinforcement type,size,volume fraction and interfacial bonding condition on the modulus of Mg matrix composites are discussed.Finally,the existing challenges and development trends of high-modulus Mg-based materials are proposed and prospected.
文摘It is showed that there are Ti 3Al, Ti 2Cu and β phase in the interface of Ti/Ti Al composites reinforced with Y 2O 3 Cr composite soft coated Ti fiber, and that interface bonding is intact. Bending strength of the composites can be increased by 26%, to 709 MPa, and bending deflection increased slightly compared with the Ti/Ti Al composites reinforced by Ti fibers coated with Y 2O 3.
基金financially supported by the National Natural Science Foundation of China(No.52275310)the Open Project of State Key Laboratory of Explosion Science and Technology(No.QNKT22-15)the BIT Research and Innovation Promoting Project(No.2022YCX020)。
文摘Benefiting from excellent mechanical properties and low density,cellular ceramic structures(CCSs)are competitive candidates as structural components.However,inherent brittleness from strong chemical bonds among atoms extremely impeded CCSs'application.Natural materials occupied outstanding strength and toughness simultaneously due to the dual-phase interpenetrated structure.Inspired by natural materials,it was proposed to fabricate coating covered and fulfilled polyurea/CCS interpenetrated composites(C/CCSs and B/CCSs)to circumvent the brittleness of 3D-printed Al_(2)O_(3)CCSs.It was demonstrated that polyurea coating had less effect on the compressive strength of C/CCSs but tremendously improved their energy-absorbing ability.The energy-absorbing ability of C/CCSs was improved from26.48-52.57 kJ·m^(-3)of CCSs to 1.04-1.89 MJ·m^(-3)because of the extended plateau stage.Furthermore,compressive strength and energy-absorbing ability of B/CCSs were strengthened to 1.33-1.36 and 2.84-4.61 times of C/CCSs,respectively.Besides,failure mode of C/CCSs changed from localized deformation to fracturing entirely with the increase in relative density of CCSs inside,which was the same as that of CCSs.However,with the help of polyurea coating,C/CCSs were still intact at strains up to60%,which would neve r fail catastrophically as CCSs at low strains.B/CCSs tended to fracture as a whole,which was not influenced by relative density of pristine CCSs.It was believed that this work provided a creative way to circumvent the brittleness of CCSs and improve their mechanical performances.
文摘Nowadays,digital images can be easily tampered due to the availability of powerful image processing software.As digital cameras continue to replace their analog counterparts,the importance of authenticating digital images,identifying their sources,and detecting forgeries is increasing.Blind image forensics is used to analyze an image in the complete absence of any digital watermark or signature.Image compositing is the most common form of digital tampering.Assuming that image compositing operations affect the inherent statistics of the image,we propose an image compositing detection method on based on a statistical model for natural image in the wavelet transform domain.The generalized Gaussian model(CGD)is employed to describe the marginal distribution of wavelet coefficients of images,and the parameters of GGD are obtained using maximumlikelihood estimator.The statistical features include GGD parameters,prediction error,mean,variance,skewness,and kurtosis at each wavelet detail subband.Then,these feature vectors are used to discriminate between natural images and composite images using support vector machine(SVM).To evaluate the performance of our proposed method,we carried out tests on the Columbia Uncompressed Image Splicing Detection Dataset and another advanced dataset,and achieved a detection accuracy of 92%and 79%,respectively.The detection performance of our method is better than that of the method using camera response function on the same dataset.
基金supported by the National Natural Science Foundation of China[grant number 42271412].
文摘In this paper, four widely used temporal compositing algorithms, i.e.median, maximum NDVI, medoid, and weighted scoring-basedalgorithms, were evaluated for annual land cover classification usingmonthly Landsat time series data. Four study areas located in California,Texas, Kansas, and Minnesota, USA were selected for image compositingand land cover classification. Results indicated that images compositedusing weighted scoring-based algorithms have the best spatial fidelitycompared to other three algorithms. In addition, the weighted scoringbasedalgorithms have superior classification accuracy, followed bymedian, maximum NDVI, and medoid in descending order. However, themedian algorithm has a significant advantage in computational efficiencywhich was ~70 times that of weighted scoring-based algorithms, andwith overall classification accuracy just slightly lower (~0.13% onaverage) than weighted scoring-based algorithms. Therefore, werecommended the weighted scoring-based compositing algorithms forsmall area land cover mapping, and median compositing algorithm forthe land cover mapping of large area considering the balance betweencomputational complexity and classification accuracy. The findings of thisstudy provide insights into the performance difference between variouscompositing algorithms, and have potential uses for the selection ofpixel-based image compositing technique adopted for land covermapping based on Landsat time series data.
基金Supported by the Autonomous Research Project of SKLCC(2024BWZ003)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA0390401)the Doctoral Research Start-up Funding of Shanxi Institute of Technology(026012).
文摘KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI).
基金supported by the National Numerical Windtunnel Project,partially by the National Natural Science Foundation of China under Grant No.61702360.
文摘With the increasing of computing ability,large-scale simulations have been generating massive amounts of data in aerodynamics.Sort-last parallel rendering is the most classical image compositing method for large-scale scientific visualization.However,in the stage of image compositing,the sort-last method may suffer from scalability problem on large-scale processors.Existing image compositing algorithms tend to perform well in certain situations.For instance,Direct Send is well on small and medium scale;Radix-k gets well performance only when the k-value is appropriate and so on.In this paper,we propose a novel method named mSwap for scientific visualization in aerodynamics,which uses the best scale of processors to make sure its performance at the best.mSwap groups the processors that we can use with a(m,k)table,which records the best combination of m(the number of processors in subgroup of each group)and k(the number of processors in each group).Then in each group,using a m-ary tree to composite the image for reducing the communication of processors.Finally,the image is composited between different groups to generate the final image.The performance and scalability of our mSwap method is demonstrated through experiments with thousands of processors.
基金support provided by the Center for Fabrication and Application of Electronic Materials at Dokuz Eylül University,Türkiye。
文摘Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.
基金Funded by Hunan Provincial Natural Science Foundation(No.2023JJ40074)Hunan Provincial Education Department Excellent Youth Project(No.21B0757)Hunan Provincial Engineering Technology Center(No.2022TP2036)。
文摘In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation.
文摘Installing internal bulkheads in a composite bucket foundation alters the rotational symmetry characteristic of a single-compartment bucket foundation,consequently influencing the stress distribution within the bucket and surrounding soil.During the seabed penetration of a spudcan from a jack-up wind turbine installation vessel,an angle may form between the spudcan’s axis and the axis of symmetry of the adjacent composite bucket foundation in the horizontal plane.Such a misalignment may affect load distribution and the non-uniform interaction between the foundation,soil,and spudcan,ultimately influencing the foundation’s stability.This study employs physical model tests to ascertain the trends in end resistance during spudcan penetration in sand,the extent of soil disturbance,and the backflow condition.The finite element coupled Eulerian-Lagrangian method is validated and utilized to determine the range of penetration angles that induce alterations in the maximum vertical displacement and tilt rate of the composite bucket foundation in sand.The differential contact stress distribution at the base of the bucket is analyzed,with qualitative criteria for sand backflow provided.Findings demonstrate that the maximum vertical displacement and tilt rate of the composite bucket foundation display a“wave-like”variation with the increasing spudcan penetration angle,peaking when the angle between the spudcan and bulkhead is the smallest.Stress distribution is predominantly concentrated at the base and apex of the bucket,becoming increasingly uneven as the penetration angle deviates from the foundation’s symmetry axis.The maximum stress gradually shifts to the junction of the bulkhead and bucket bottom on the side with the shortest net distance from the spudcan.Considering the in-place stability and stress state of the composite bucket foundation is therefore imperative,and particular attention should be paid to the foundation’s state when the angle between the spudcan and bulkhead is small.
文摘Nail changes following upper extremity transplantation(UET)cannot be overlooked as they possess diagnostic and prognostic relevance in allotransplantation of upper limbs.This comprehensive review explores nail and nail bed related changes encountered in UET recipients in the literature.The differential diagnosis of nail abnormalities in UET includes a wide range of systemic,local and iatrogenic conditions other than immune responses to the allograft.It requires interdisciplinary evaluation by primary transplant surgeons,pathologists,dermatologists and immunologists.The possible underlying mechanisms of nail pathology in UET and the management are discussed.It also underscores the importance of onychodystrophy and need for timely intervention and to improve outcomes in UET recipients.
基金supported by the National Key Research and Development Program of China(No.2024YFB3212901)National Natural Science Foundation of China(12072189)the Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao Tong University(No.YG2025ZD05)。
文摘Pipelines are extensively used in environments such as nuclear power plants,chemical factories,and medical devices to transport gases and liquids.These tubular environments often feature complex geometries,confined spaces,and millimeter-scale height restrictions,presenting significant challenges to conventional inspection methods.Here,we present an ultrasonic microrobot(weight,80 mg;dimensions,24 mm×7 mm;thickness,210μm)to realize agile and bidirectional navigation in narrow pipelines.The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology.The robot exhibits various vibration modes when driven by ultrasonic frequency signals,its motion speed reaches81 cm s-1 at 54.8 k Hz,exceeding that of the fastest piezoelectric microrobots,and its forward and backward motion direction is controllable through frequency modulation,while the minimum driving voltage for initial movement can be as low as 3 VP-P.Additionally,the robot can effortlessly climb slopes up to 24.25°and carry loads more than 36 times its weight.The robot is capable of agile navigation through curved L-shaped pipes,pipes made of various materials(acrylic,stainless steel,and polyvinyl chloride),and even over water.To further demonstrate its inspection capabilities,a micro-endoscope camera is integrated into the robot,enabling real-time image capture inside glass pipes.
基金supported by the National Natural Science Foundation of China[grant numbers 41975087,U2242212,and 41975085]supported by the National Natural Science Foundation of China[grant number U2242212]。
文摘Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.
文摘Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods.
基金supported by the National Key R&D Program of China(No.2018YFB0703603)。
文摘Extremely low lattice thermal conductivity is always the pursuit of thermoelectric materials research.In this work,we reported an exceptional effect of Ag2S addition in MnTe,an emerging promising midtemperature thermoelectric material,to enable the realization of minimum lattice thermal conductivity,namely-0.4 Wm^(-1) K^(-1).Such a low lattice thermal conductivity is guaranteed by the incorporation of in-situ formed Ag rich phase(Ag2Te)with ultralow lattice thermal conductivity and further scattering of phonons from the partial doping effects induced point defects and boundaries between various phases.Apart from the dramatically decreased lattice thermal conductivity,the partial doping of Ag and S simultaneously enhance the electrical conductivity,further contributing to enhanced thermoelectric performance.Meanwhile,an inverse sign of Seebeck and Hall coefficient was observed and rationalized by the influence of highly electron-conductive Ag_(2)Te phase.Thanks to the synergetic modulation of electrical and thermal transport properties by in-situ formed composite,a high ZT value of 1.1 was achieved in MnTe based thermoelectric materials,which also demonstrates the importance of compositing approaches to design state-of-the-art thermoelectric materials.
基金funded by the National Key Research and Development Program of China(2019YFE0126700)the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation(2018P1-CAF).
文摘The increasing availability of freely accessible remote sensing data has been crucial for improved global monitoring studies.Multisource image combination is a common approach for overcoming a major limitation associated with single-sensor data sources,which cannot provide adequate observations to fill data gaps arising from cloud contamination,shadows,and other atmospheric effects.In particular,image compositing is often used to generate clear view images over a large area.For example,the best available pixel(BAP)method has been proposed to construct clear view and spatially contiguous composites based on pixellevel quality rules.For any location with a bad observation,this method searches observations acquired in other dates and uses the one with the highest score to replace the contaminated observation.This,however,can lead to artificially large discontinuities along the edge of a filled area,which is typically caused by large phenological differences among the observations considered.To mitigate this issue,we developed a multifactor weighting(MFW)method for constructing clear view composites with a higher level of spatial continuity and radiometric consistency than those produced using the BAP method.Assessments over 4 study sites selected from different climate zones in China demonstrated that the composites produced using the MFW method were more consistent with reference images than those generated using the BAP method.Spectral agreements between MFW composites and the reference(R=0.78 to 0.95)were generally higher than the agreements between BAP composites and the reference(R=0.65 to 0.93).These results demonstrated that the proposed MFW method can provide a promising strategy for constructing clear view,seamless,and radiometrically consistent image composites for large-scale applications.
基金supported by the National Natural Science Foundation of China(Nos.52171216 and 52472221)the Qilu Young Scholar Program of Shandong University and Core Facility Sharing Platform of Shandong University.
文摘Quaternary chalcogenides are viewed as a class of potential thermoelectric materials due to their good thermoelectric performance in the medium temperature region.In this work,carbon nanotubes(CNTs)with varying weight percentages are composited into the quaternary chalcogenide Cu_(2.1)Mn_(0.9)SnSe_(4)(CMTS)using a technique that combines ball-milling and hot-pressing,and the effect of CNTs on the thermoelectric performance of CMTS is investigated.The compositing of CNTs results in an increase in the intrinsic defects of CMTS,thereby enhancing the electrical conductivities of the composited samples.Besides,the addition of CNTs introduces various phonon scattering mechanisms,effectively restraining the lattice thermal conductivities of the composited samples,particularly in the low to medium temperature range.Ultimately,owing to the concurrent optimization of the power factor and thermal conductivity,the x=0.25 sample achieves a zT value of 0.37 at 673 K.The compositing of highly conductive secondary phase is recognized as a viable approach for the simultaneous enhancement of the thermoelectric properties of materials.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.