期刊文献+
共找到554篇文章
< 1 2 28 >
每页显示 20 50 100
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
1
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material composites materials Damping property STIFFNESS Fatigue characteristics
在线阅读 下载PDF
Effects of synthesis temperature and raw materials composition on preparation of β-Sialon based composites from fly ash 被引量:9
2
作者 MA Bei-yue LI Ying +1 位作者 YAN Chen DING Yu-shi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期129-133,共5页
β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition... β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by X-ray diffraction and scanning electronic microscopy. The results show that increasing heating temperature or mass ratio of carbon black to fly ash can promote the formation of β-Sialon. The β-Sialon based composites can be synthesized at 1723 K for 6 h while heating the sample with mass ratio of carbon black to fly ash of 0.56. The as-received β-Sialon in the composites exists as granular with an average particle size of 2-3 μm. The preparation process of β-Sialon based composites includes the formation of O′-Sialon, X-Sialon and β-Sialon as well as the conversion processes of O′-Sialon and X-Sialon to β-Sialon. 展开更多
关键词 SIALON composites carbothermal reduction-nitridation process fly ash synthesis temperature raw materials composition
在线阅读 下载PDF
Preparation and characterization of capric-palmitic-stearic acid ternary eutectic mixture/expanded vermiculite composites as form-stabilized thermal energy storage materials 被引量:12
3
作者 Weiyi Zhang Xiaoguang Zhang +5 位作者 Zhaohui Huang Zhaoyu Yin Ruilong Wen Yaoting Huang Xiaowen Wu Xin Min 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期379-386,共8页
In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via va... In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials. 展开更多
关键词 Capric-palmitic-stearic acid Expanded vermiculite Form-stable composite phase-change material (PCM)
原文传递
Fabrication and performance optimization of Mn-Zn ferrite/EP composites as microwave absorbing materials 被引量:2
4
作者 王文杰 臧充光 焦清介 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期478-482,共5页
Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by... Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz). 展开更多
关键词 ferrite composite material microwave absorber
原文传递
Intelligent Molding Proceeding of Composites and Intelligent Manufacturing Systems for Composite Materials 被引量:1
5
作者 李辰砂 Zhang Boming +2 位作者 Wu Zhanjun Wang Dianfu ZHANG Baoyou 《High Technology Letters》 EI CAS 2001年第1期92-96,共5页
The technology of Intelligent cure operation is set forth according to developing tendency of smart material and structure. Intelligent-system-based tool was developed in order to operate the autoclave cure of a fiber... The technology of Intelligent cure operation is set forth according to developing tendency of smart material and structure. Intelligent-system-based tool was developed in order to operate the autoclave cure of a fiber reinforced thermosetting matrix composite laminate in an optimal manner. The objective function is comforts for minimizing the total cure time, uniforming the temperature distribution, controling exothermal and minimizing the process-induced residual stresses in the laminate. Data is analyzed on-line to determine the trends in real-time. The results from application of this overall strategy for the curing of composites are presented. 展开更多
关键词 Intelligent system Composite materials CURING
在线阅读 下载PDF
MATERIAL MULTIPOLE MECHANICS OF ELASTIC DIELECTRIC COMPOSITES
6
作者 周树昂 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第3期215-237,共23页
The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material mult... The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites. 展开更多
关键词 BODY material MULTIPOLE MECHANICS OF ELASTIC DIELECTRIC composites
在线阅读 下载PDF
Carbon-based quantum dots/nanodots materials for potassium ion storage 被引量:1
7
作者 Zhanheng Yan Weiqing Su +6 位作者 Weiwei Xu Qianhui Mao Lisha Xue Huanxin Li Wuhua Liu Xiu Li Qiuhui Zhang 《Chinese Chemical Letters》 2025年第4期83-95,共13页
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ... With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers. 展开更多
关键词 Quantum dots NANODOTS Potassium ion battery ANODE Composite material
原文传递
Advances in Organic Porous Polymeric-Supported Photothermal Phase Change Materials 被引量:1
8
作者 Fulai Zhao Weikang Yuan +4 位作者 Huiyu Chen Hui Fu Zhen Li Jian Xiao Yiyu Feng 《Carbon Energy》 2025年第6期47-89,共43页
The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change ma... The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change materials(PTPCMs)represent a novel type of composite phase change material(PCM)aimed at improving thermal storage efficiency by incorporating photothermal materials into traditional PCMs and encapsulating them within porous structures.Various porous encapsulation materials have been studied,including porous carbon,expanded graphite,and ceramics,but issues like brittleness hinder their practical use.To overcome these limitations,flexible PTPCMs using organic porous polymers—like foams,hydrogels,and porous wood—have emerged,offering high porosity and lightweight characteristics.This review examines recent advancements in the preparation of PTPCMs based on porous polymer supports through techniques like impregnation and in situ polymerization,assessing the impact of different porous polymer materials on PCM performance and clarifying the mechanisms of photothermal conversion and heat storage.Subsequently,the most recent advancements in the applications of porous polymer-based PTPCMs are systematically summarized,and future research challenges and possible solutions are discussed.This review aims to foster awareness about the potential of PTPCMs in promoting environmentally friendly energy practices and catalyzing further research in this promising field. 展开更多
关键词 functional composite materials multifunctional application photothermal conversion efficiency photothermal phase change materials porous polymers thermal energy storage
在线阅读 下载PDF
Toward Analytical Homogenized Relaxation Modulus for Fibrous Composite Material with Reduced Order Homogenization Method
9
作者 Huilin Jia Shanqiao Huang Zifeng Yuan 《Computers, Materials & Continua》 SCIE EI 2025年第1期193-222,共30页
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom... In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability. 展开更多
关键词 Homogenized relaxation modulus VISCOELASTIC standard solid model reduced order homogenization fibrous composite material
在线阅读 下载PDF
Review on Enhancing Separation of Heavy Metal Ions by Cyclodextrin Adsorbent Materials
10
作者 Zhang Ning Liu Jie +3 位作者 Zhang Xin Zhao Yuxiu Xue Zhixiao Xia Wenxiang 《稀有金属材料与工程》 北大核心 2025年第3期628-639,共12页
The traditional techniques for treating wastewater contaminated by heavy metals mostly involve chemical precipitation,solvent extraction and adsorption,ion-exchange,chemical precipitation,and membrane separation.The m... The traditional techniques for treating wastewater contaminated by heavy metals mostly involve chemical precipitation,solvent extraction and adsorption,ion-exchange,chemical precipitation,and membrane separation.The main shortcomings of traditional procedures are low economic efficiency,lack of environmental friendliness,and poor selectivity.Cyclodextrins are artificial compounds that resemble cages.Through host-vip interaction,pollutants can be adsorbed by its stable inner hydrophobic chamber and exterior hydrophilic surface.It is not only inexpensive and environmentally friendly,but also quite selective.The synthesis and application of materials were reviewed,as well as the primary influencing factors,and the reaction principle of cyclodextrin adsorbent materials for better separation of heavy metal ions.And the future trend of discovery was described. 展开更多
关键词 Β-CYCLODEXTRIN adsorption heavy metal composite material influencing factor
原文传递
Regulating the Amount of Graphene Oxide for Enhanced Capacitive Energy Storage of MOF Derived Materials
11
作者 Yong-Ji Qina Jing-Quan Yang +5 位作者 Hao Wang Mei-Ling Lian Pei-Pei Jia Jun Luo Xi-Jun Liu Jun-Feng Liu 《电化学(中英文)》 北大核心 2025年第7期18-26,共9页
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and... In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance. 展开更多
关键词 Metal-organic framework Iron oxide Graphene oxide Composite material SUPERCAPACITOR
在线阅读 下载PDF
Study on Hydration Mechanism of Composite Cementitious Material with Large Content of Fly Ash and Slag
12
作者 YANG Jinchao SHEN Chao +2 位作者 LIN Rui CAI Xinan ZUO Lian 《材料导报》 北大核心 2025年第S2期495-498,共4页
In order to adjust some properties of cement grout or concrete,some mineral admixtures are usually added in the preparation.Admixtures can reduce the cement consumption and save the cost,and also adjust the workabilit... In order to adjust some properties of cement grout or concrete,some mineral admixtures are usually added in the preparation.Admixtures can reduce the cement consumption and save the cost,and also adjust the workability of the material,improve the strength and durability of the cement stone,or reduce hydration heat of the composite cement.At present,the content of fly ash or slag is generally less than 50%among the composite cementitious materials that have been studied more,but there is little research on composite cementitious materials with large mineral admixture.In this paper,XRD,SEM,and adiabatic temperature rise tests were used to discuss hydration products and mechanism of composite cement grout with 90%content of fly ash and slag.The results show that the hydration of the composite cement grout is an alkali-activated hydration reaction,and the hydration products are mainly amorphous substances such as hydrated calcium silicate or hydrated calcium aluminate gel.The hydration reaction temperature rise is much lower than that of ordinary cement grout,and the time of the temperature peak is significantly delayed. 展开更多
关键词 large content fly ash SLAG composite cement material hydration mechanism
在线阅读 下载PDF
Synthesis and Application of Zero-Dimensional Metal Oxide Composites in Energy Chemistry
13
作者 Runtian Hu 《Journal of Electronic Research and Application》 2025年第5期185-191,共7页
Against the backdrop of increasingly prominent global energy shortages and environmental issues,the development of efficient energy conversion and storage technologies has become crucial.Zero-dimensional(0D)metal oxid... Against the backdrop of increasingly prominent global energy shortages and environmental issues,the development of efficient energy conversion and storage technologies has become crucial.Zero-dimensional(0D)metal oxide composites exhibit significant application value in the field of energy chemistry due to their unique properties,such as quantum size effect and high specific surface area.From a broad perspective,this paper reviews the main synthesis methods of these composites,including sol-gel method,hydrothermal/solvothermal method,precipitation method,and template method,while analyzing the characteristics of each method.It further discusses their applications in photocatalytic hydrogen production,fuel cells,lithium-ion batteries,and supercapacitors.Additionally,the current challenges,such as material dispersibility and interface bonding,are pointed out,and future development directions are prospected,aiming to provide references for related research. 展开更多
关键词 Zero-dimensional metal oxide Composite material Synthesis method Energy chemistry Energy conversion Energy storage
在线阅读 下载PDF
The recent progress of transition metal dichalcogenides-based photothermal materials for solar water generation
14
作者 Chen Gu Huacao Ji +5 位作者 Keyu Xu Jianmei Chen Kang Chen Junan Pan Ning Sun Longlu Wang 《Chinese Chemical Letters》 2025年第8期7-17,共11页
At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenid... At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination. 展开更多
关键词 Transition metal dichalcogenides Photothermal seawater desalination Structureregulation Composite material Saltdeposition
原文传递
Recent advance in utilization of advanced composite photothermal materials for water disinfection:Synthesis,mechanism,and application
15
作者 Ruiting Ni Kwame Nana Opoku +3 位作者 Xingrong Li Yarao Gao Yanyun Wang Fu Yang 《Chinese Chemical Letters》 2025年第9期171-179,共9页
Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials... Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials offer a promising alternative strategy for solving water disinfection challenges.This technology effectively destroys bacterial biofilms by designing materials with controlled photothermal properties.Despite the potential of this technology,there is a lack of comprehensive reviews on the application of photothermal materials in water disinfection.The aim of this paper is to provide a comprehensive and up-to-date overview of the research and application of photothermal materials in water disinfection.It focuses on composites in photothermal materials,elucidates their basic mechanisms and sterilization properties,and provides a systematic and detailed overview of their recent progress in the field.The goal of this review is to offer insights into the future design of photothermal materials and to propose strategies for their practical application in disinfection processes. 展开更多
关键词 Photothermal antimicrobial material Composite material Water disinfection DESALINATION Water purification
原文传递
Thermal and Electrical Percolation Transport Behavior in Composite Materials with Oriented Binary Fillers
16
作者 Jinxin Zhong Zhuoyu Wang +3 位作者 Xiaokun Gu Jun Wang Yuanyuan Wang Xin Qian 《Chinese Physics Letters》 2025年第8期83-96,共14页
In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applic... In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs. 展开更多
关键词 insulating polymer matrixhigh thermal conductivity electrical resistive integrated circuit packagingthermal interface materials tims must composite materials binary fillers metallic nanowires thermal percolationwhile thermal percolation
原文传递
Recent progress in carbon-based composite materials for adv
17
作者 Ao Song Yunchao Li +5 位作者 Dingkun Yuan Jie Wu Hailin Gu Guangxue Zhang Angjian Wu Jiangrong Xu 《Green Energy & Environment》 2025年第7期1437-1460,共24页
Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure c... Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure carbon materials still have the disadvantage of low theoretical capacity.New design and preparation strategies for carbon-based composites can overcome the problems.Based on the analysis of Na^(+)storage mechanism of carbon-based composite materials,the factors influencing the performance of SIBs are discussed.Adjustment methods for improving the electrochemical performance of electrodes are evaluated in detail,including carbon skeleton design and composite material selection.Some advanced composite materials,i.e.,carbon-conversion composite and carbon-MXene composite,are also being explored.New advances in flexible electrodes based on carbon-based composite on flexible SIBs is investigated.The existing issues and future issues of carbon-based composite materials are discussed. 展开更多
关键词 Sodium ion batteries Carbon-based composite materials Structural design Performance enhancement Flexible electrodes
在线阅读 下载PDF
Recent Progress of Electrospun Nanofiber-Based Composite Materials for Monitoring Physical,Physiological,and Body Fluid Signals
18
作者 Fang Guo Zheng Ren +6 位作者 Shanchi Wang Yu Xie Jialin Pan Jianying Huang Tianxue Zhu Si Cheng Yuekun Lai 《Nano-Micro Letters》 2025年第12期132-177,共46页
Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are ... Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are particularly wellsuited for E-skin applications due to their exceptional mechanical properties,tunable breathability,and lightweight nature.Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials,enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics.Here,this review begins with an overview of electrospinning technology,including far-field electrospinning,near-field electrospinning,and melt electrospinning.It also discusses the diverse morphologies of electrospun nanofibers,such as core-shell,porous,hollow,bead,Janus,and ribbon structure,as well as strategies for incorporating functional materials to enhance nanofiber performance.Following this,the article provides a detailed introduction to electrospun nanofiber-based composite materials(i.e.,nanofiber/hydrogel,nanofiber/aerogel,nanofiber/metal),emphasizing their recent advancements in monitoring physical,physiological,body fluid,and multi-signal in human signal detection.Meanwhile,the review explores the development of multimodal sensors capable of responding to diverse stimuli,focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements.Finally,current challenges are analyzed,while future prospects for electrospun nanofiber-based composite sensors are outlined.This review aims to advance the design and application of next-generation flexible electronics,fostering breakthroughs in multifunctional sensing and health monitoring technologies. 展开更多
关键词 Flexible sensor ELECTROSPINNING Nanofibrous membrane Composite materials
在线阅读 下载PDF
Effect of Mechanically Ground Ferrous Extraction Tailing of Nickel Slag on the Properties of Cement-Based Materials
19
作者 FENG Qiong WEI Chao +3 位作者 QIAO Hongxia SONG Yanning ZHANG Yunsheng ZHENG Jianghua 《Journal of Wuhan University of Technology(Materials Science)》 2025年第3期810-820,共11页
In order to realize the full resource utilization of ferronickel slag(FNS)in cement-based materials,this paper studied the influences of mechanical grinding activation on the physical and chemical properties and react... In order to realize the full resource utilization of ferronickel slag(FNS)in cement-based materials,this paper studied the influences of mechanical grinding activation on the physical and chemical properties and reactivity of ferrous extraction tailing of nickel slag(FETNS).Four grinding processes of 5,10,20 and 30 min were set up to evaluate the influence of grinding process on the physical and chemical properties of FETNS with the aid of BET,XRD,Rietveld analysis and particle size distribution.The cement-FETNS composite cementitious material was prepared by replacing cement with 0%,10%,15%,20%,25%and 30%FETNS.The influence of FETNS fineness and content on the properties of composite cementitious system were characterized by mechanical properties,reaction products,early hydration process and pore structure characteristics.The results show that the grinding process can effectively improve the pozzolanic activity of FETNS.The compressive strength of FETNS-M_(30)paste is higher than that of FETNS-M_(5) paste in the early and late stages,and the later strength is higher than that of the baseline group when the content of FETNS-M_(30)is 10%-25%.The pozzolanic activity of FETNS-M_(30)powder is significantly improved and higher than that of FETNS-M_(5) powder.Under the same content,the Ca/Si ratio of C-S-H gel in FETNS-M_(30)paste is small,and the degree of silicate polymerization is higher.When the FETNS-M_(30)content is 10%,the proportions of favorable pores d<50 nm(harmless pores and less-harmful pores)of FETNS-M_(5) paste and FETNS-M_(30)paste is 95.3%and 95.4%,respectively,indicating a denser pore structure of the FETNS-M_(30)paste. 展开更多
关键词 cement-based composite materials ferrous extraction tailing of nickel slag ball milling activation pozzolanic activity hydration products
原文传递
Boron Carbide and Composites in Advanced Energy Storage:Research Progress and Prospects
20
作者 Zhigang YU Shaoyi SHEN +4 位作者 Jifeng WANG Song WU Aoyi DONG Xinhua ZHENG Shikai LIU 《Research and Application of Materials Science》 2025年第1期12-21,共10页
Boron carbide(B4C)and its composite materials demonstrate versatile applicability in energy storage technologies,particularly within new energy battery systems.This review systematically examines recent advances in th... Boron carbide(B4C)and its composite materials demonstrate versatile applicability in energy storage technologies,particularly within new energy battery systems.This review systematically examines recent advances in their battery applications.Commencing with an analysis of B4C's distinctive physicochemical properties,crystal structure,and synthesis methodologies,we critically evaluate its implementation in lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),lithium-sulfur(Li-S)batteries,and fuel cells.The discussion substantiates how B4C-based materials augment critical battery performance metrics.Finally,development challenges and future research trajectories are outlined.We anticipate that through targeted performance optimization,innovative processing techniques,advanced interface engineering,and cross-disciplinary integration,B4C composites will unlock broader applications in next-generation energy storage systems. 展开更多
关键词 Boron carbide(B4C) Composite materials Advanced energy storage New energy batteries Application advances
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部