Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were ...Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were investigated.The results demonstrated that the three laminated composites exhibited similar microstructural features,characterized by well-bonded interfaces between the Al layer and the Al−27%Si alloy layer.The tensile and flexural strengths of the composites were significantly higher than those of both Al−22%Si and Al−27%Si alloys.These strengths increased gradually with decreasing the layer thickness,reaching peak values of 222.5 and 407.4 MPa,respectively.Crack deflection was observed in the cross-sections of the bending fracture surfaces,which contributed to the enhanced strength and toughness.In terms of thermo-physical properties,the thermal conductivity of the composites was lower than that of Al−22%Si and Al−27%Si alloys.The minimum reductions in thermal conductivity were 6.8%and 0.9%for the T3 laminated composite,respectively.Additionally,the coefficient of thermal expansion of the composites was improved,exhibiting varying temperature-dependent behaviors.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
In Ti-Al laminated composites,cracks nucleate preferentially at the Al_(3)Ti layer,but the inhibitory effect of Al_(3)Ti on crack extension is ignored.Interestingly,by combining experiment and phase-field crystal simu...In Ti-Al laminated composites,cracks nucleate preferentially at the Al_(3)Ti layer,but the inhibitory effect of Al_(3)Ti on crack extension is ignored.Interestingly,by combining experiment and phase-field crystal simulation,we found that the micrometer Al_(3)Ti particles in the diffusion layer play the role of crack deflection and passivation,which is attributed to the lattice distortion induced by Al_(3)Ti consumes the energy of the crack in extension.In addition,it is found that the growth process of Al_(3)Ti is divided into two stages:nucleation stage and growth stage.Compared with the growth stage,the Al_(3)Ti grains in the nucleation stage are finer in the growth layer.Finer grains show better crack deflection and avoid stress concentration.展开更多
Copper matrix composites prepared via traditional methods face mechanical property and electrical conductivity trade-off problems.In this study,TiB_(2)/Cu−Cu heterogeneous laminated composites with submicron lamellar ...Copper matrix composites prepared via traditional methods face mechanical property and electrical conductivity trade-off problems.In this study,TiB_(2)/Cu−Cu heterogeneous laminated composites with submicron lamellar thicknesses were prepared via flake powder metallurgy(FPM)using gas-atomized in situ composite powders as raw material.By thermal mismatch strengthening,and the geometrically necessary dislocations(GNDs)generated by mechanically incompatible deformation between adjacent heterogeneous lamellae and their interaction with statistically stored dislocations(SSDs),the as-prepared TiB_(2)/Cu−Cu submicron laminated composites(SLCs)exhibit significantly enhanced mechanical properties.At the same time,the interaction and propagation of multimode cracks provide extrinsic toughening for SLCs.The pure Cu lamellae with low density grain boundaries and dislocations and no TiB_(2)particles provide a channel with little electron scattering for the rapid transport of carriers,thereby ensuring high electrical conductivity.展开更多
The Cu/1010 steel bimetal laminated composites(BLCs)were rolled to different thicknesses to investigate the effect of rolling direction and reduction on the microstructure evolution and mechanical properties.The diffe...The Cu/1010 steel bimetal laminated composites(BLCs)were rolled to different thicknesses to investigate the effect of rolling direction and reduction on the microstructure evolution and mechanical properties.The difference of mechanical properties between the Cu and 1010 steel causes different thickness reductions,percentage spread,and cladding ratios.The formation of strong texture induces larger strength of the rolled samples,and as the volume fraction of 1010 steel is larger in Route-A,its strength is consistently greater than that in Route-B.The obstruction of interface to crystal and dislocation slip results in the formation of interface distortion,inducing dislocation density gradient when the rolling reduction is low in Route-A.The slip planes of the Cu and 1010 steel are more prone to suffer the normal strain,while the shear strain of other crystal planes is obviously larger than the normal strain under rolling load near the interface.展开更多
1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was in...1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was investigated by microstructural characterization,mechanical property tests and in-situ fracture morphology observations.The results show that microstructural differences between the constituent layers are present in the Al/Al LMCs after various numbers of ARB cycles.Compared with rolled 2560-layered Al/Al LMCs with 37.5%and 50.0%rolling reductions,those with 62.5%rolling reductions allow for more effective improvements in the mechanical properties after annealing treatment due to their relatively high mechanical incompatibility across the interface.During tensile deformation,with the increased magnitude of incompatibility in the 2560-layered Al/Al LMC with a heterogeneous lamellar structure,the densities of the geometrically necessary dislocations(GNDs)increase to accommodate the relatively large strain gradient,resulting in considerable back stress strengthening and improved mechanical properties.展开更多
Laminated metal composites(LMCs)have widespread application prospects and are set to become indispensable in addressing modern engineering challenges owing to their capability of leveraging the synergy between differe...Laminated metal composites(LMCs)have widespread application prospects and are set to become indispensable in addressing modern engineering challenges owing to their capability of leveraging the synergy between different metals and tailoring performance by flexibly regulating the layered configuration.The plastic forming process,as a promising advanced manufacturing technology,has been increasingly adopted for the fabrication of LMC components due to its advantages of high material utilization rate,high production efficiency,and excellent mechanical properties of the product.This review delved into the research progress on the plastic-forming process of LMCs,including rolling,extrusion,spinning,etc.It outlined the forming principles,unique characteristics,bonding mechanisms,and the influence of key process parameters on deformation,microstructure,and property.This review focused on the heterogeneous deformation and interfacial regulation of LMCs,providing insights into the mechanisms of heterogeneous deformation,damage and fracture,and formation mechanisms of intermetallic compounds.It also delineated the experimental characterization and numerical modeling methods to elucidate the heterogeneous deformation behavior,as well as the approaches to evaluating and enhancing the performance of LMCs.Finally,the challenges and prospects of manufacturing high-performance LMCs by plastic forming process are orchestrated.展开更多
On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted lami...The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted laminates is developed based on the progressive damage theory and the fatigue behavior of unimpacted unidirectional plies.The model can predict the fatigue life of laminated composites with different ply parameters,geometry,impact damage,and fatigue loading conditions.In order to obtain the impact damage information in the case that no impact test data is available,a whole damage process analysis method for laminated composites under the impact loading and the fatigue loading is analyzed.The predicted damage statuses of composite laminates can be used to analyze the post-impact fatigue life.A parametric modeling program is developed to predict the impact damage process and the fatigue life of impacted laminates based on the whole damage process analysis method.The most relative error between the prediction and the test results is 7.78%.展开更多
This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the s...This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impac...In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.展开更多
Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are ex...Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed.展开更多
Both single-face vacuum bag curing(SVC) and double-face vacuum bag curing(DVC)can be used in scarf repair of composite structures. But different curing conditions caused by the sealing state may affect the bonding qua...Both single-face vacuum bag curing(SVC) and double-face vacuum bag curing(DVC)can be used in scarf repair of composite structures. But different curing conditions caused by the sealing state may affect the bonding quality of scarf-repaired structures. In this paper, the effect of curing condition on bonding quality of scarf-repaired laminates was experimentally investigated in terms of surface profiles, moisture absorption curves and section profiles. In order to further explore the moisture absorption mechanism, finite element model of the repaired laminates using DVC was established with moisture diffusion of both the adhesive and composite laminates considered. This model was verified by experimental results. Based on the model of DVC case, the model of SVC case was built by changing moisture absorption parameters of the adhesive. Results show that SVC reduces the bonding quality, mainly reflecting in more adhesive inner voids and patch-toparent dislocation. And SVC increases moisture absorption rate and moisture equilibrium content of the adhesive, and its effect on the former is far greater than that on the latter.展开更多
The composite laminates with embedded acrylonitrile butadiene rubber (NBR) layer were fabricated by cocuring process. The embedded layers were perforated with a series of small holes to allow resin to flow through t...The composite laminates with embedded acrylonitrile butadiene rubber (NBR) layer were fabricated by cocuring process. The embedded layers were perforated with a series of small holes to allow resin to flow through the damping layer and completely couple the structure to improve bending stiffness and interlaminar shearing strength of these cocured composite laminates. The damping, bending stiffness and shearing strength of these composite laminates with different perforation diameters were investigated. The experimental results show that increasing the perforation diameter leads to significant decreases in damping and significant increase in bending stiffness up to an area ratio of 7.065%. The area ratio here is defined as the ratio of perforation area to the total damping area. Beyond the area ratio of 7.065%, increasing the diameter to an area ratio of 50.24% results in only a slight variation in damping and bending stiffness. Moreover, increasing the perforation diameter does not always increase the shearing strength of the embedded viscoelastic layer. The shearing strength of embedded viscoelastic layer increases only when the area ratio is greater than 19.625%; instead, it will decrease.展开更多
This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were co...This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were conducted on woven carbon fibre lamina3238 A/CF3052 and woven glass fibre lamina 3238 A/EW250 F,and the time-dependent LVI contact force and deflection curves,static TAI and CAI load versus displacement curves were determined and discussed.A modified progressive damage model was presented for explicit dynamic LVI and implicit static TAI and CAI analysis by using basic material properties and geometrical dimensions,and progressive damage LVI,TAI and CAI behaviors of woven composite laminates were simulated,demonstrating a good correlation between simulations and experiments.展开更多
Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al inte...Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.展开更多
In the design optimization of variable stiffness composites,manufacturing constraints imposed by the automated fiber placement technology must be considered.In the present paper,two filters are proposed to address thi...In the design optimization of variable stiffness composites,manufacturing constraints imposed by the automated fiber placement technology must be considered.In the present paper,two filters are proposed to address this issue,and they are incorporated into the Shepard interpolation-based design optimization framework developed in our previous studies.The fiber angle arrangement of a composite is represented by a continuous function that interpolates fiber angles at scattered design points.Two filters are appointed for each design point to deal with two typical manufacturing constraints,i.e.,fiber curvature and gap/overlap.At each design point,the sensitivity is first filtered in a rectangular region around this point,and by this means the fiber curvature is controlled;then in another rectangular region around this design point,the filtered sensitivities are averaged,and the result is used to update the corresponding design variable.Several numerical examples are investigated,and the results show that the proposed method is effective.展开更多
Bisphenol A dicyanate ester resins modified by fluorine-containing liquid crystal compound(LCFE)are applied as polymer matrix(LCFE-BADCy),poly(p-phenylene-2,6-benzobisoxazole)(PBO)fibers as rein-forcements,and fluorin...Bisphenol A dicyanate ester resins modified by fluorine-containing liquid crystal compound(LCFE)are applied as polymer matrix(LCFE-BADCy),poly(p-phenylene-2,6-benzobisoxazole)(PBO)fibers as rein-forcements,and fluorine/adamantane PBO precursor(pre FABPBO)as interfacial compatibilizer to prepare the corresponding PBO fibers/FABPBO/LCFE-BADCy wave-transparent laminated composites.LCFE could improve the order degree of BADCy cured network,in favor of enhancing the wave-transparent perfor-mance,mechanical properties,and intrinsic thermal conductivity.The dielectric constant and dielectric loss of PBO fibers/FABPBO/LCFE-BADCy composites are highly temperature(25–200℃)and frequency(10^(4)–10^(7) Hz and 8.2–12.4 GHz)stable with the value of 2.49 and 0.003 under 10^(6) Hz at 25℃,and the corresponding wave transmission efficiency is 95.0%,higher than that of 92.5%for PBO fibers/BADCy com-posites.The interlamellar shear strength and flexural strength are respectively 50.7 MPa and 682.5 MPa,38.1%and 16.2%higher than those of PBO fibers/BADCy composites.Besides,the volume resistivity,breakdown voltage,heat resistance index,glass transition temperature,flame retardant grade,and ul-timate oxygen index of PBO fibers/FABPBO/LCFE-BADCy composites are respectively 5.3×10^(15)Ωcm,29.75 kV/mm,217.2℃,245.7℃,V-1 grade,and 33.6%,expected to be performed as a new generation of“lightweight/loading/wave-transparent”electromagnetic window materials in advanced military weapons and civil communication base station.展开更多
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by the National Natural Science Foundation of China(No.52274369)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China(No.623020034).
文摘Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were investigated.The results demonstrated that the three laminated composites exhibited similar microstructural features,characterized by well-bonded interfaces between the Al layer and the Al−27%Si alloy layer.The tensile and flexural strengths of the composites were significantly higher than those of both Al−22%Si and Al−27%Si alloys.These strengths increased gradually with decreasing the layer thickness,reaching peak values of 222.5 and 407.4 MPa,respectively.Crack deflection was observed in the cross-sections of the bending fracture surfaces,which contributed to the enhanced strength and toughness.In terms of thermo-physical properties,the thermal conductivity of the composites was lower than that of Al−22%Si and Al−27%Si alloys.The minimum reductions in thermal conductivity were 6.8%and 0.9%for the T3 laminated composite,respectively.Additionally,the coefficient of thermal expansion of the composites was improved,exhibiting varying temperature-dependent behaviors.
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.
基金supported by the National Natural Science Foundation of China(Nos.52375394,52074246,52275390,52205429,52201146)the National Defense Basic Scientific Research Program of China(JCKY2020408B002)the Key Research and Development Program of Shanxi Province(202102050201011,202202050201014).
文摘In Ti-Al laminated composites,cracks nucleate preferentially at the Al_(3)Ti layer,but the inhibitory effect of Al_(3)Ti on crack extension is ignored.Interestingly,by combining experiment and phase-field crystal simulation,we found that the micrometer Al_(3)Ti particles in the diffusion layer play the role of crack deflection and passivation,which is attributed to the lattice distortion induced by Al_(3)Ti consumes the energy of the crack in extension.In addition,it is found that the growth process of Al_(3)Ti is divided into two stages:nucleation stage and growth stage.Compared with the growth stage,the Al_(3)Ti grains in the nucleation stage are finer in the growth layer.Finer grains show better crack deflection and avoid stress concentration.
基金supported by the National Natural Science Foundation of China(Nos.52127802,52322409,52271137)the Scientific Research Program of Education Department of Shaanxi Province,China(No.22JY050)the Science and Technology Project of Xi’an,China(No.2021SFGX0004).
文摘Copper matrix composites prepared via traditional methods face mechanical property and electrical conductivity trade-off problems.In this study,TiB_(2)/Cu−Cu heterogeneous laminated composites with submicron lamellar thicknesses were prepared via flake powder metallurgy(FPM)using gas-atomized in situ composite powders as raw material.By thermal mismatch strengthening,and the geometrically necessary dislocations(GNDs)generated by mechanically incompatible deformation between adjacent heterogeneous lamellae and their interaction with statistically stored dislocations(SSDs),the as-prepared TiB_(2)/Cu−Cu submicron laminated composites(SLCs)exhibit significantly enhanced mechanical properties.At the same time,the interaction and propagation of multimode cracks provide extrinsic toughening for SLCs.The pure Cu lamellae with low density grain boundaries and dislocations and no TiB_(2)particles provide a channel with little electron scattering for the rapid transport of carriers,thereby ensuring high electrical conductivity.
基金the National Key Research and Development Program of China(No.2018YFE0306103)the National Natural Science Foundation of China(No.52071050)+1 种基金the Science and Technology Innovation Project of Ningbo,China(No.2021Z032)the Program of China Scholarships Council(No.202106060148).
文摘The Cu/1010 steel bimetal laminated composites(BLCs)were rolled to different thicknesses to investigate the effect of rolling direction and reduction on the microstructure evolution and mechanical properties.The difference of mechanical properties between the Cu and 1010 steel causes different thickness reductions,percentage spread,and cladding ratios.The formation of strong texture induces larger strength of the rolled samples,and as the volume fraction of 1010 steel is larger in Route-A,its strength is consistently greater than that in Route-B.The obstruction of interface to crystal and dislocation slip results in the formation of interface distortion,inducing dislocation density gradient when the rolling reduction is low in Route-A.The slip planes of the Cu and 1010 steel are more prone to suffer the normal strain,while the shear strain of other crystal planes is obviously larger than the normal strain under rolling load near the interface.
基金financial support from the Special Fund for Special Posts of Guizhou University,China(No.[2022]06)the Guizhou Provincial Basic Research Program(Natural Science),China(No.ZK[2023]78)+1 种基金the National Natural Science Foundation of China(No.52365020)the Open Fund Project of Key Laboratory of Advanced Manufacturing Technology,China(No.GZUAMT2022KF[04]).
文摘1060/7050 Al/Al laminated metal composites(LMCs)with heterogeneous lamellar structures were prepared by accumulative roll bonding(ARB),cold rolling and subsequent annealing treatment.The strengthening mechanism was investigated by microstructural characterization,mechanical property tests and in-situ fracture morphology observations.The results show that microstructural differences between the constituent layers are present in the Al/Al LMCs after various numbers of ARB cycles.Compared with rolled 2560-layered Al/Al LMCs with 37.5%and 50.0%rolling reductions,those with 62.5%rolling reductions allow for more effective improvements in the mechanical properties after annealing treatment due to their relatively high mechanical incompatibility across the interface.During tensile deformation,with the increased magnitude of incompatibility in the 2560-layered Al/Al LMC with a heterogeneous lamellar structure,the densities of the geometrically necessary dislocations(GNDs)increase to accommodate the relatively large strain gradient,resulting in considerable back stress strengthening and improved mechanical properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.52305361,52105337,52475354,and 52090043)the BK21 Four program(SNU Materials Education/Research Division for Creative Global Leaders)+1 种基金the China Postdoctoral Science Foundation(Grant No.2023M741245),and the National Key Research and Development Program of China(Grant No.2022YFB3706903)support from the Ko-rean Ministry of Trade,Industry and Energy(MOTIE,Korea)(Grant No.20022438).
文摘Laminated metal composites(LMCs)have widespread application prospects and are set to become indispensable in addressing modern engineering challenges owing to their capability of leveraging the synergy between different metals and tailoring performance by flexibly regulating the layered configuration.The plastic forming process,as a promising advanced manufacturing technology,has been increasingly adopted for the fabrication of LMC components due to its advantages of high material utilization rate,high production efficiency,and excellent mechanical properties of the product.This review delved into the research progress on the plastic-forming process of LMCs,including rolling,extrusion,spinning,etc.It outlined the forming principles,unique characteristics,bonding mechanisms,and the influence of key process parameters on deformation,microstructure,and property.This review focused on the heterogeneous deformation and interfacial regulation of LMCs,providing insights into the mechanisms of heterogeneous deformation,damage and fracture,and formation mechanisms of intermetallic compounds.It also delineated the experimental characterization and numerical modeling methods to elucidate the heterogeneous deformation behavior,as well as the approaches to evaluating and enhancing the performance of LMCs.Finally,the challenges and prospects of manufacturing high-performance LMCs by plastic forming process are orchestrated.
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
文摘The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted laminates is developed based on the progressive damage theory and the fatigue behavior of unimpacted unidirectional plies.The model can predict the fatigue life of laminated composites with different ply parameters,geometry,impact damage,and fatigue loading conditions.In order to obtain the impact damage information in the case that no impact test data is available,a whole damage process analysis method for laminated composites under the impact loading and the fatigue loading is analyzed.The predicted damage statuses of composite laminates can be used to analyze the post-impact fatigue life.A parametric modeling program is developed to predict the impact damage process and the fatigue life of impacted laminates based on the whole damage process analysis method.The most relative error between the prediction and the test results is 7.78%.
文摘This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金supported by the National Natural Science Foundation of China(No.11072202)
文摘In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.
基金supported by Guangdong Major Project of Basic and Applied Basic Research,No. 2020B0301030006。
文摘Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed.
基金National Natural Science Foundation of China (No. 11472024) for financial support。
文摘Both single-face vacuum bag curing(SVC) and double-face vacuum bag curing(DVC)can be used in scarf repair of composite structures. But different curing conditions caused by the sealing state may affect the bonding quality of scarf-repaired structures. In this paper, the effect of curing condition on bonding quality of scarf-repaired laminates was experimentally investigated in terms of surface profiles, moisture absorption curves and section profiles. In order to further explore the moisture absorption mechanism, finite element model of the repaired laminates using DVC was established with moisture diffusion of both the adhesive and composite laminates considered. This model was verified by experimental results. Based on the model of DVC case, the model of SVC case was built by changing moisture absorption parameters of the adhesive. Results show that SVC reduces the bonding quality, mainly reflecting in more adhesive inner voids and patch-toparent dislocation. And SVC increases moisture absorption rate and moisture equilibrium content of the adhesive, and its effect on the former is far greater than that on the latter.
基金supported from the Center for Composites Material and Structure of Harbin Institute of Technology,China
文摘The composite laminates with embedded acrylonitrile butadiene rubber (NBR) layer were fabricated by cocuring process. The embedded layers were perforated with a series of small holes to allow resin to flow through the damping layer and completely couple the structure to improve bending stiffness and interlaminar shearing strength of these cocured composite laminates. The damping, bending stiffness and shearing strength of these composite laminates with different perforation diameters were investigated. The experimental results show that increasing the perforation diameter leads to significant decreases in damping and significant increase in bending stiffness up to an area ratio of 7.065%. The area ratio here is defined as the ratio of perforation area to the total damping area. Beyond the area ratio of 7.065%, increasing the diameter to an area ratio of 50.24% results in only a slight variation in damping and bending stiffness. Moreover, increasing the perforation diameter does not always increase the shearing strength of the embedded viscoelastic layer. The shearing strength of embedded viscoelastic layer increases only when the area ratio is greater than 19.625%; instead, it will decrease.
基金the National Natural Science Foundation of China(No.51875021)。
文摘This paper seeks to deal with progressive damage behaviors of woven composite laminates subjected to low-velocity impact(LVI),tension-after-impact(TAI)and compression-afterimpact(CAI).The LVI,TAI and CAI tests were conducted on woven carbon fibre lamina3238 A/CF3052 and woven glass fibre lamina 3238 A/EW250 F,and the time-dependent LVI contact force and deflection curves,static TAI and CAI load versus displacement curves were determined and discussed.A modified progressive damage model was presented for explicit dynamic LVI and implicit static TAI and CAI analysis by using basic material properties and geometrical dimensions,and progressive damage LVI,TAI and CAI behaviors of woven composite laminates were simulated,demonstrating a good correlation between simulations and experiments.
基金the financial supports from the S&T Program of Hebei Province,China(No.20373901D)the National Natural Science Foundation of China(Nos.51807047,51804095)+2 种基金the National Science Foundation of Hebei Province,China(No.E2019402433)the Youth Top Talents Science and Technology Research Project of Hebei Province University,China(No.BJ2019003)the Research and Development Project of Science and Technology of Handan City,China(No.19422111008-19).
文摘Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.
基金the National Natural Science Foundation of China(No.51975227)the Natural Science Foundation for Distinguished Young Scholars of Hubei Province(No.2017CFA044)。
文摘In the design optimization of variable stiffness composites,manufacturing constraints imposed by the automated fiber placement technology must be considered.In the present paper,two filters are proposed to address this issue,and they are incorporated into the Shepard interpolation-based design optimization framework developed in our previous studies.The fiber angle arrangement of a composite is represented by a continuous function that interpolates fiber angles at scattered design points.Two filters are appointed for each design point to deal with two typical manufacturing constraints,i.e.,fiber curvature and gap/overlap.At each design point,the sensitivity is first filtered in a rectangular region around this point,and by this means the fiber curvature is controlled;then in another rectangular region around this design point,the filtered sensitivities are averaged,and the result is used to update the corresponding design variable.Several numerical examples are investigated,and the results show that the proposed method is effective.
基金The authors are grateful for the support and funding from National Scientific Research Project(Basis Strengthening Plan)State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202103).
文摘Bisphenol A dicyanate ester resins modified by fluorine-containing liquid crystal compound(LCFE)are applied as polymer matrix(LCFE-BADCy),poly(p-phenylene-2,6-benzobisoxazole)(PBO)fibers as rein-forcements,and fluorine/adamantane PBO precursor(pre FABPBO)as interfacial compatibilizer to prepare the corresponding PBO fibers/FABPBO/LCFE-BADCy wave-transparent laminated composites.LCFE could improve the order degree of BADCy cured network,in favor of enhancing the wave-transparent perfor-mance,mechanical properties,and intrinsic thermal conductivity.The dielectric constant and dielectric loss of PBO fibers/FABPBO/LCFE-BADCy composites are highly temperature(25–200℃)and frequency(10^(4)–10^(7) Hz and 8.2–12.4 GHz)stable with the value of 2.49 and 0.003 under 10^(6) Hz at 25℃,and the corresponding wave transmission efficiency is 95.0%,higher than that of 92.5%for PBO fibers/BADCy com-posites.The interlamellar shear strength and flexural strength are respectively 50.7 MPa and 682.5 MPa,38.1%and 16.2%higher than those of PBO fibers/BADCy composites.Besides,the volume resistivity,breakdown voltage,heat resistance index,glass transition temperature,flame retardant grade,and ul-timate oxygen index of PBO fibers/FABPBO/LCFE-BADCy composites are respectively 5.3×10^(15)Ωcm,29.75 kV/mm,217.2℃,245.7℃,V-1 grade,and 33.6%,expected to be performed as a new generation of“lightweight/loading/wave-transparent”electromagnetic window materials in advanced military weapons and civil communication base station.