In this study,a class of rare earth composite sandwich phthalocyanines(MPcs,M=La,Y,Yb,Sc) were prepared and compounded with graphene and carbon nanotubes to obtain MPc/Gr and MPc/CNTs composites.The electrocatalytic b...In this study,a class of rare earth composite sandwich phthalocyanines(MPcs,M=La,Y,Yb,Sc) were prepared and compounded with graphene and carbon nanotubes to obtain MPc/Gr and MPc/CNTs composites.The electrocatalytic behaviors of MPc/Gr and MPc/CNTs electrodes were further investigated.The results show that the central rare earth metal has a large influence on the electrocatalytic performance.For the MPcs/Gr samples,ScPc with the smallest ionic radius and molecular size can be more uniformly dispersed in graphene,and the hydrogen precipitation overpotential of ScPc/Gr electrode is514 mV,corresponding to a Tafel slope of 148 mV/dec,with better electrocatalytic performance than other rare earth metal phthalocyanines.As for the MPc/CNTs composites,LaPc,which has the largest ionic radius and molecular size,is more uniformly dispersed on the surface of CNTs,so that the LaPc/CNT electrode exhibits the best LSV performance with the smallest corresponding Tafel slope(176 mV/dec).The main reason is the different binding modes of MPcs molecules in Gr and CNTs.When rare earth phthalocyanine is combined with layered graphene,the smallest size of rare earth phthalocyanine(ScPc)is more easily embedded in the graphene layer,resulting in better homogeneity of the composite,larger effective contact area and better electrocatalytic performance.In contrast,when rare earth phthalocyanine is bound to carbon nanotubes in a tubular structure,it is mainly bound by attaching to the surface or being entangled by the carbon nanotubes.In this case,the rare-earth phthalocyanine molecules(LaPc)with larger layer spacing can provide more contact area with CNTs,forming a more uniform and effective composite,which eventually provides more active sites and better electrocatalytic performance.展开更多
The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the m...The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures.展开更多
Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficienc...Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficiency and pollution removal mechanism of the FeMnO were approached. Results show that the main compositions of the FeMnO are δ-manganese dioxide and ferric hydroxide. The specific surface area is about 146.22 m^2/g. The FeMnO contains rich hydroxyl with extremely strong adsorption action and chemical adsorption activity. The zero charge point of the oxide in pure water is about 8.0 of pH value. Under neutral pH value conditions, the FeMnO particle surface carried positive charges. The FeMnO particles are quasi-spherical micro-particles with irregular sizes adjoined each other to form net construction. Phosphorus removal efficiency of the FeMnO is remarkable, the total dissoluble phosphorus of settled water can be reduced below detecting level(0.3 μtg/L) at a FeMnO dosage of 6 mg/L, and total phosphorus below detecting level at a FeMnO dosage of 10 mg/L, for water samples containing total phos- phorus of 1281.70 μg/L and total dissoluble phosphorus of 1187.91 μtg/L. The mechanism of effective coagulation for phosphorus removal is combined results of multiple actions of adsorption, charge neutralization, adsorption/bridging and so on.展开更多
The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the...The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.展开更多
Halloysite nanotube-composited thermo-responsive hydrogel system has been successfully developed for controlled drug release by copolymerization of N-isopropylacrylamide (NIPAM) with silane-modified halloysite nanot...Halloysite nanotube-composited thermo-responsive hydrogel system has been successfully developed for controlled drug release by copolymerization of N-isopropylacrylamide (NIPAM) with silane-modified halloysite nanotubes (HNT) through thermally initiated free-radical polymerization. With methylene blue as a model drug, thermo-responsive drug release results demonstrate that the drug release from the nanotubes in the composited hy-drogel can^be well controlled by manipulating the environmental temperature. When the hydrogel network is swol- len at temperature below the lower critical solution temperature (LCST), drug releases steadily from lumens of the embedded nanotubes, whereas the drug release stops when hydrogel shrinks at temperature above the LCST. The release of model drug from the HNT-composited hydrogel matches well with its thermo-responsive volume phasetransition, and shows characteristics of well controlled release. The design strategy and release results of the pro- posed novel HNT-composited thermo-responsive hydrogel system provide valuable guidance for designing respon- s_i_ve nanocomposites for controlled-release of active agents.展开更多
30% Fe CN/ZIS(30% Fe doped g-C_(3)N_(4)composited ZnIn_(2)S_(4)) was synthesized by a simple water bath method, via in-situ growth of abundant well-dispersed ZnIn_(2)S_(4)nanosheets on the Fe doped g-C_(3)N_(4)surface...30% Fe CN/ZIS(30% Fe doped g-C_(3)N_(4)composited ZnIn_(2)S_(4)) was synthesized by a simple water bath method, via in-situ growth of abundant well-dispersed ZnIn_(2)S_(4)nanosheets on the Fe doped g-C_(3)N_(4)surface. Experimental results showed the optimized 30% Fe CN/ZIS achieved the best photoreduction of Cr(VI)performance within a wide p H range, which was 9.5 times and 700 times higher than that of pure ZnIn_(2)S_(4)and 30% Fe CN(Fe doped g-C_(3)N_(4)). This is due to the intense synergy between the Fe-Nxbond and close interface contact produces a high-speed charge transfer channel, thus significantly improving the efficiency of optical carrier separation and migration. Meanwhile, UV-vis diffuse reflection spectra and photoluminescence spectroscopy showed that iron doping significantly narrowed the bandgap of gC_(3)N_(4), preventing electron-hole pair recombination. Further, the microstructures and charge separation properties were analyzed by scanning electron microscope, Photoluminescence Spectroscopy and timeresolved photoluminescence, which revealed the structure-activity relationship of composite structure and the synergistic mechanism of each functional component. This research should provide a viable technique for creating composites with high photocatalytic activity for the treatment of chromium-containing wastewater.展开更多
Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure...Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure will diminish through certain annealing process,while the cracks formed from fly-line microstructure will remain.Therefore,fly-line microstructure can be considered as a plastic deformation microstructure and crack source s meanwhile its formation is considered as a special plastic deformation mechanism of metal under explosive load.展开更多
A composite material as a work piece is taken into account to investigate the elastic characteristics displaying during the cutting process. The magnitude of the elastic behaviors such as displacements and stresses re...A composite material as a work piece is taken into account to investigate the elastic characteristics displaying during the cutting process. The magnitude of the elastic behaviors such as displacements and stresses reacts sensitively to the cutting angle and the vertical force increase, and the magnitude increases along the increments of the cutting angle and the vertical force increase. The buffering mechanism at the bond coat is described well by the fluctuation phenomenon for the horizontal displacement distribution profiles at the substrate. The variation of cutting angle under high vertical force yields profound influence on the behaviors of the longitudinal stress and the shear stress.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w...Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.展开更多
Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,p...Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
Improving the accuracy of anthropogenic volatile organic compounds(VOCs)emission inventory is crucial for reducing atmospheric pollution and formulating control policy of air pollution.In this study,an anthropogenic s...Improving the accuracy of anthropogenic volatile organic compounds(VOCs)emission inventory is crucial for reducing atmospheric pollution and formulating control policy of air pollution.In this study,an anthropogenic speciated VOCs emission inventory was established for Central China represented by Henan Province at a 3 km×3 km spatial resolution based on the emission factormethod.The 2019 VOCs emission in Henan Provincewas 1003.5 Gg,while industrial process source(33.7%)was the highest emission source,Zhengzhou(17.9%)was the city with highest emission and April and August were the months with the more emissions.High VOCs emission regions were concentrated in downtown areas and industrial parks.Alkanes and aromatic hydrocarbons were the main VOCs contribution groups.The species composition,source contribution and spatial distribution were verified and evaluated through tracer ratio method(TR),Positive Matrix Factorization Model(PMF)and remote sensing inversion(RSI).Results show that both the emission results by emission inventory(EI)(15.7 Gg)and by TRmethod(13.6 Gg)and source contribution by EI and PMF are familiar.The spatial distribution of HCHO primary emission based on RSI is basically consistent with that of HCHO emission based on EI with a R-value of 0.73.The verification results show that the VOCs emission inventory and speciated emission inventory established in this study are relatively reliable.展开更多
SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quali...SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times.展开更多
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv...Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.展开更多
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ...The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.展开更多
Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering impleme...Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.展开更多
Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerosp...Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs.展开更多
基金Project supported by the National Natural Science Foundation of China(21762019)the China Postdoctoral Special Grant Program(2021T140138)+1 种基金Natural Science Foundation of Jiangxi Province(20224ACB204004)Guangdong Yangfan Innovative&Enterpreneurial Research Team Program(2016YT03N101)。
文摘In this study,a class of rare earth composite sandwich phthalocyanines(MPcs,M=La,Y,Yb,Sc) were prepared and compounded with graphene and carbon nanotubes to obtain MPc/Gr and MPc/CNTs composites.The electrocatalytic behaviors of MPc/Gr and MPc/CNTs electrodes were further investigated.The results show that the central rare earth metal has a large influence on the electrocatalytic performance.For the MPcs/Gr samples,ScPc with the smallest ionic radius and molecular size can be more uniformly dispersed in graphene,and the hydrogen precipitation overpotential of ScPc/Gr electrode is514 mV,corresponding to a Tafel slope of 148 mV/dec,with better electrocatalytic performance than other rare earth metal phthalocyanines.As for the MPc/CNTs composites,LaPc,which has the largest ionic radius and molecular size,is more uniformly dispersed on the surface of CNTs,so that the LaPc/CNT electrode exhibits the best LSV performance with the smallest corresponding Tafel slope(176 mV/dec).The main reason is the different binding modes of MPcs molecules in Gr and CNTs.When rare earth phthalocyanine is combined with layered graphene,the smallest size of rare earth phthalocyanine(ScPc)is more easily embedded in the graphene layer,resulting in better homogeneity of the composite,larger effective contact area and better electrocatalytic performance.In contrast,when rare earth phthalocyanine is bound to carbon nanotubes in a tubular structure,it is mainly bound by attaching to the surface or being entangled by the carbon nanotubes.In this case,the rare-earth phthalocyanine molecules(LaPc)with larger layer spacing can provide more contact area with CNTs,forming a more uniform and effective composite,which eventually provides more active sites and better electrocatalytic performance.
基金supported by the National Key R&D Program of China(2021YFB2400400)the National Natural Science Foundation of China(Grant No.22379120,22179085)+5 种基金the Key Research and Development Plan of Shanxi Province(China,Grant No.2018ZDXM-GY-135,2021JLM-36)the National Natural Science Foundation of China(Grant No.22108218)the“Young Talent Support Plan”of Xi’an Jiaotong University(71211201010723)the Qinchuangyuan Innovative Talent Project(QCYRCXM-2022-137)the“Young Talent Support Plan”of Xi’an Jiaotong University(HG6J003)the“1000-Plan program”of Shaanxi Province。
文摘The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures.
基金Supported by National Natural Science Foundation of China(Nos.50378004 and 50678007)Beijing Natural Science Foun-dation(No.8082009)+1 种基金Science & Technology Development Programme of Beijing Municipal Commission of Education (No.KM200610005025)Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(No. 05004014200701).
文摘Iron-manganese composited oxide(FeMnO) was prepared with potassium permanganate and ferrous salt. Interface performance, charge property and structure topography of the FeMnO were investigated. Coagulation efficiency and pollution removal mechanism of the FeMnO were approached. Results show that the main compositions of the FeMnO are δ-manganese dioxide and ferric hydroxide. The specific surface area is about 146.22 m^2/g. The FeMnO contains rich hydroxyl with extremely strong adsorption action and chemical adsorption activity. The zero charge point of the oxide in pure water is about 8.0 of pH value. Under neutral pH value conditions, the FeMnO particle surface carried positive charges. The FeMnO particles are quasi-spherical micro-particles with irregular sizes adjoined each other to form net construction. Phosphorus removal efficiency of the FeMnO is remarkable, the total dissoluble phosphorus of settled water can be reduced below detecting level(0.3 μtg/L) at a FeMnO dosage of 6 mg/L, and total phosphorus below detecting level at a FeMnO dosage of 10 mg/L, for water samples containing total phos- phorus of 1281.70 μg/L and total dissoluble phosphorus of 1187.91 μtg/L. The mechanism of effective coagulation for phosphorus removal is combined results of multiple actions of adsorption, charge neutralization, adsorption/bridging and so on.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant No.62174154).
文摘The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.
基金Supported by the National ]qatural Science Foundation of China (20906064), the National Basic Research Program of China (2009CB623407), the Program for Changjiang Scholars and Innovative Research Team in University (IRTl163), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (201163).
文摘Halloysite nanotube-composited thermo-responsive hydrogel system has been successfully developed for controlled drug release by copolymerization of N-isopropylacrylamide (NIPAM) with silane-modified halloysite nanotubes (HNT) through thermally initiated free-radical polymerization. With methylene blue as a model drug, thermo-responsive drug release results demonstrate that the drug release from the nanotubes in the composited hy-drogel can^be well controlled by manipulating the environmental temperature. When the hydrogel network is swol- len at temperature below the lower critical solution temperature (LCST), drug releases steadily from lumens of the embedded nanotubes, whereas the drug release stops when hydrogel shrinks at temperature above the LCST. The release of model drug from the HNT-composited hydrogel matches well with its thermo-responsive volume phasetransition, and shows characteristics of well controlled release. The design strategy and release results of the pro- posed novel HNT-composited thermo-responsive hydrogel system provide valuable guidance for designing respon- s_i_ve nanocomposites for controlled-release of active agents.
基金supported by the National Natural Science Foundation of China (No. 22066022)。
文摘30% Fe CN/ZIS(30% Fe doped g-C_(3)N_(4)composited ZnIn_(2)S_(4)) was synthesized by a simple water bath method, via in-situ growth of abundant well-dispersed ZnIn_(2)S_(4)nanosheets on the Fe doped g-C_(3)N_(4)surface. Experimental results showed the optimized 30% Fe CN/ZIS achieved the best photoreduction of Cr(VI)performance within a wide p H range, which was 9.5 times and 700 times higher than that of pure ZnIn_(2)S_(4)and 30% Fe CN(Fe doped g-C_(3)N_(4)). This is due to the intense synergy between the Fe-Nxbond and close interface contact produces a high-speed charge transfer channel, thus significantly improving the efficiency of optical carrier separation and migration. Meanwhile, UV-vis diffuse reflection spectra and photoluminescence spectroscopy showed that iron doping significantly narrowed the bandgap of gC_(3)N_(4), preventing electron-hole pair recombination. Further, the microstructures and charge separation properties were analyzed by scanning electron microscope, Photoluminescence Spectroscopy and timeresolved photoluminescence, which revealed the structure-activity relationship of composite structure and the synergistic mechanism of each functional component. This research should provide a viable technique for creating composites with high photocatalytic activity for the treatment of chromium-containing wastewater.
文摘Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure will diminish through certain annealing process,while the cracks formed from fly-line microstructure will remain.Therefore,fly-line microstructure can be considered as a plastic deformation microstructure and crack source s meanwhile its formation is considered as a special plastic deformation mechanism of metal under explosive load.
文摘A composite material as a work piece is taken into account to investigate the elastic characteristics displaying during the cutting process. The magnitude of the elastic behaviors such as displacements and stresses reacts sensitively to the cutting angle and the vertical force increase, and the magnitude increases along the increments of the cutting angle and the vertical force increase. The buffering mechanism at the bond coat is described well by the fluctuation phenomenon for the horizontal displacement distribution profiles at the substrate. The variation of cutting angle under high vertical force yields profound influence on the behaviors of the longitudinal stress and the shear stress.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
文摘Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.
基金Key R&D Plan of Shaanxi Province(2021LLRH-05-09)Shaanxi Province Youth Talent Support Program Project(CLGC202234)Sponsored by Innovative Pilot Platform for Layered Metal Composite Materials(2024CX-GXPT-20)。
文摘Zirconium-titanium-steel composite plate with the size of 2500 mm×7800 mm×(3+0.7+22)mm was prepared by explosive welding+rolling method,and its properties were analyzed by ultrasonic nondestructive testing,phased array waveform shape,interface structure shape,electronic scanning,and mechanical property testing.Results show that the rolling temperature of zirconiumtitanium complex should be controlled at 760°C,and the rolling reduction of each pass should be controlled at 10%–25%.The explosive velocity to prepare zirconium-titanium-steel composite plates should be controlled at 2450–2500 m/s,the density should be 0.78 g/cm3,the stand-off height should be 12 mm,and the explosive height of Zone A and Zone B should be 45–50 mm.Explosive welding combined with rolling method reduces the impact of explosive welding and multiple heat treatment on material properties.Meanwhile,the problems of surface wrinkling and cracking,which occur during the preparation process of large-sized zirconiumtitanium-steel composite plate,can be solved.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
基金supported by Zhengzhou PM_(2.5)and O_(3)Collaborative Control and Monitoring Project(No.20220347A)the 2020 National Supercomputing Zhengzhou Center Innovation Ecosystem Construction Technology Project(No.201400210700).
文摘Improving the accuracy of anthropogenic volatile organic compounds(VOCs)emission inventory is crucial for reducing atmospheric pollution and formulating control policy of air pollution.In this study,an anthropogenic speciated VOCs emission inventory was established for Central China represented by Henan Province at a 3 km×3 km spatial resolution based on the emission factormethod.The 2019 VOCs emission in Henan Provincewas 1003.5 Gg,while industrial process source(33.7%)was the highest emission source,Zhengzhou(17.9%)was the city with highest emission and April and August were the months with the more emissions.High VOCs emission regions were concentrated in downtown areas and industrial parks.Alkanes and aromatic hydrocarbons were the main VOCs contribution groups.The species composition,source contribution and spatial distribution were verified and evaluated through tracer ratio method(TR),Positive Matrix Factorization Model(PMF)and remote sensing inversion(RSI).Results show that both the emission results by emission inventory(EI)(15.7 Gg)and by TRmethod(13.6 Gg)and source contribution by EI and PMF are familiar.The spatial distribution of HCHO primary emission based on RSI is basically consistent with that of HCHO emission based on EI with a R-value of 0.73.The verification results show that the VOCs emission inventory and speciated emission inventory established in this study are relatively reliable.
基金the support of the Xingliao Talent Program of Liaoning Province(No.XLYC2001004)the High Level Talents Innovation Plan of Dalian(No.2020RD02)the Fundamental Research Funds for the Central Universities(No.DUT22LAB501).
文摘SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times.
基金supported by the National Natural Science Foundation of China(No.52127816),the National Key Research and Development Program of China(No.2020YFA0715000)the National Natural Science and Hong Kong Research Grant Council Joint Research Funding Project of China(No.5181101182)the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China(No.N_PolyU513/18).
文摘Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.
基金supported by the Natural Science Research Project of the Anhui Educational Committee,China(No.2022AH050827)the Open Research Fund Program of Anhui Province Key Laboratory of Specialty Polymers,Anhui University of Science and Technology,China(No.AHKLSP23-12)the Joint National-Local Engineering Research Center for Safe and Precise Coal Mining Fund,China(No.EC2022020)。
文摘The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.
基金supported by the National Natural Science Foundation of China(Nos.51925103,52271149,52171159)the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-09-E00114)+5 种基金the Natural Science Foundation of Shanghai(22ZR1422500)the Innovation Program of Shanghai Science and Technology(No.23520760700)the Aviation Foundation(No.2023Z0530S6004)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202221)the financial support from Program 173(No.2020-JCIQ-ZD-186-01)the Space Utilization System of China Manned Space Engineering(No.KJZ-YY-NCL08).
文摘Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.
基金supported by The National Key Research and Development Program of China(No.2019YFB1901001).
文摘Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs.